These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 34029472)

  • 1. Thermodynamics-Based Molecular Modeling of α-Helices in Membranes and Micelles.
    Lomize AL; Schnitzer KA; Todd SC; Pogozheva ID
    J Chem Inf Model; 2021 Jun; 61(6):2884-2896. PubMed ID: 34029472
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interactions of hydrophobic peptides with lipid bilayers: Monte Carlo simulations with M2delta.
    Kessel A; Shental-Bechor D; Haliloglu T; Ben-Tal N
    Biophys J; 2003 Dec; 85(6):3431-44. PubMed ID: 14645040
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermodynamic model of secondary structure for alpha-helical peptides and proteins.
    Lomize AL; Mosberg HI
    Biopolymers; 1997 Aug; 42(2):239-69. PubMed ID: 9235002
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of peptides corresponding to the seven transmembrane domains of human adenosine A2a receptor.
    Lazarova T; Brewin KA; Stoeber K; Robinson CR
    Biochemistry; 2004 Oct; 43(40):12945-54. PubMed ID: 15461468
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Designing transmembrane alpha-helices that insert spontaneously.
    Wimley WC; White SH
    Biochemistry; 2000 Apr; 39(15):4432-42. PubMed ID: 10757993
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Homooligopeptides composed of hydrophobic amino acid residues interact in a specific manner by taking alpha-helix or beta-structure toward lipid bilayers.
    Lee S; Yoshitomi H; Morikawa M; Ando S; Takiguchi H; Inoue T; Sugihara G
    Biopolymers; 1995 Sep; 36(3):391-8. PubMed ID: 7669922
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermodynamics of melittin binding to lipid bilayers. Aggregation and pore formation.
    Klocek G; Schulthess T; Shai Y; Seelig J
    Biochemistry; 2009 Mar; 48(12):2586-96. PubMed ID: 19173655
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Position-dependence of stabilizing polar interactions of asparagine in transmembrane helical bundles.
    Lear JD; Gratkowski H; Adamian L; Liang J; DeGrado WF
    Biochemistry; 2003 Jun; 42(21):6400-7. PubMed ID: 12767221
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oriented Circular Dichroism: A Method to Characterize Membrane-Active Peptides in Oriented Lipid Bilayers.
    Bürck J; Wadhwani P; Fanghänel S; Ulrich AS
    Acc Chem Res; 2016 Feb; 49(2):184-92. PubMed ID: 26756718
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantification of helix-helix binding affinities in micelles and lipid bilayers.
    Lomize AL; Pogozheva ID; Mosberg HI
    Protein Sci; 2004 Oct; 13(10):2600-12. PubMed ID: 15340167
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alpha-helical transmembrane peptides: a "divide and conquer" approach to membrane proteins.
    Bordag N; Keller S
    Chem Phys Lipids; 2010 Jan; 163(1):1-26. PubMed ID: 19682979
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ca2+ -ATPase structure in the E1 and E2 conformations: mechanism, helix-helix and helix-lipid interactions.
    Lee AG
    Biochim Biophys Acta; 2002 Oct; 1565(2):246-66. PubMed ID: 12409199
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of sequence hydrophobicity and bilayer width upon the minimum length required for the formation of transmembrane helices in membranes.
    Krishnakumar SS; London E
    J Mol Biol; 2007 Nov; 374(3):671-87. PubMed ID: 17950311
    [TBL] [Abstract][Full Text] [Related]  

  • 14. TMDOCK: An Energy-Based Method for Modeling α-Helical Dimers in Membranes.
    Lomize AL; Pogozheva ID
    J Mol Biol; 2017 Feb; 429(3):390-398. PubMed ID: 27622289
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Studies of the minimum hydrophobicity of alpha-helical peptides required to maintain a stable transmembrane association with phospholipid bilayer membranes.
    Lewis RN; Liu F; Krivanek R; Rybar P; Hianik T; Flach CR; Mendelsohn R; Chen Y; Mant CT; Hodges RS; McElhaney RN
    Biochemistry; 2007 Jan; 46(4):1042-54. PubMed ID: 17240988
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structures and mode of membrane interaction of a short alpha helical lytic peptide and its diastereomer determined by NMR, FTIR, and fluorescence spectroscopy.
    Oren Z; Ramesh J; Avrahami D; Suryaprakash N; Shai Y; Jelinek R
    Eur J Biochem; 2002 Aug; 269(16):3869-80. PubMed ID: 12180963
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interactions involved in the realignment of membrane-associated helices. An investigation using oriented solid-state NMR and attenuated total reflection Fourier transform infrared spectroscopies.
    Aisenbrey C; Kinder R; Goormaghtigh E; Ruysschaert JM; Bechinger B
    J Biol Chem; 2006 Mar; 281(12):7708-16. PubMed ID: 16407268
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of a membrane protein folding motif, the Ser zipper, using designed peptides.
    North B; Cristian L; Fu Stowell X; Lear JD; Saven JG; Degrado WF
    J Mol Biol; 2006 Jun; 359(4):930-9. PubMed ID: 16697010
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of thiol-disulfide equilibria to measure the energetics of assembly of transmembrane helices in phospholipid bilayers.
    Cristian L; Lear JD; DeGrado WF
    Proc Natl Acad Sci U S A; 2003 Dec; 100(25):14772-7. PubMed ID: 14657351
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Association energetics of membrane spanning alpha-helices.
    MacKenzie KR; Fleming KG
    Curr Opin Struct Biol; 2008 Aug; 18(4):412-9. PubMed ID: 18539023
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.