BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

307 related articles for article (PubMed ID: 34029538)

  • 21. Planar cell polarity links axes of spatial dynamics in neural-tube closure.
    Nishimura T; Honda H; Takeichi M
    Cell; 2012 May; 149(5):1084-97. PubMed ID: 22632972
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Morphogenetic movements driving neural tube closure in Xenopus require myosin IIB.
    Rolo A; Skoglund P; Keller R
    Dev Biol; 2009 Mar; 327(2):327-38. PubMed ID: 19121300
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bone morphogenetic proteins regulate neural tube closure by interacting with the apicobasal polarity pathway.
    Eom DS; Amarnath S; Fogel JL; Agarwala S
    Development; 2011 Aug; 138(15):3179-88. PubMed ID: 21750029
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Shroom induces apical constriction and is required for hingepoint formation during neural tube closure.
    Haigo SL; Hildebrand JD; Harland RM; Wallingford JB
    Curr Biol; 2003 Dec; 13(24):2125-37. PubMed ID: 14680628
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Distinct spatiotemporal contribution of morphogenetic events and mechanical tissue coupling during Xenopus neural tube closure.
    Christodoulou N; Skourides PA
    Development; 2022 Jul; 149(13):. PubMed ID: 35662330
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Apicobasal polarity and neural tube closure.
    Eom DS; Amarnath S; Agarwala S
    Dev Growth Differ; 2013 Jan; 55(1):164-72. PubMed ID: 23277919
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cellular basis of neuroepithelial bending during mouse spinal neural tube closure.
    McShane SG; Molè MA; Savery D; Greene ND; Tam PP; Copp AJ
    Dev Biol; 2015 Aug; 404(2):113-24. PubMed ID: 26079577
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Microtubules, polarity and vertebrate neural tube morphogenesis.
    Cearns MD; Escuin S; Alexandre P; Greene ND; Copp AJ
    J Anat; 2016 Jul; 229(1):63-74. PubMed ID: 27025884
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The cellular dynamics of neural tube formation.
    van der Spuy M; Wang JX; Kociszewska D; White MD
    Biochem Soc Trans; 2023 Feb; 51(1):343-352. PubMed ID: 36794768
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Enabled (Xena) regulates neural plate morphogenesis, apical constriction, and cellular adhesion required for neural tube closure in Xenopus.
    Roffers-Agarwal J; Xanthos JB; Kragtorp KA; Miller JR
    Dev Biol; 2008 Feb; 314(2):393-403. PubMed ID: 18201691
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mechanical roles of apical constriction, cell elongation, and cell migration during neural tube formation in Xenopus.
    Inoue Y; Suzuki M; Watanabe T; Yasue N; Tateo I; Adachi T; Ueno N
    Biomech Model Mechanobiol; 2016 Dec; 15(6):1733-1746. PubMed ID: 27193152
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Shroom3-mediated recruitment of Rho kinases to the apical cell junctions regulates epithelial and neuroepithelial planar remodeling.
    Nishimura T; Takeichi M
    Development; 2008 Apr; 135(8):1493-502. PubMed ID: 18339671
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Non-neural surface ectodermal rosette formation and F-actin dynamics drive mammalian neural tube closure.
    Zhou CJ; Ji Y; Reynolds K; McMahon M; Garland MA; Zhang S; Sun B; Gu R; Islam M; Liu Y; Zhao T; Hsu G; Iwasa J
    Biochem Biophys Res Commun; 2020 Jun; 526(3):647-653. PubMed ID: 32248972
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Neural tube closure requires the endocytic receptor Lrp2 and its functional interaction with intracellular scaffolds.
    Kowalczyk I; Lee C; Schuster E; Hoeren J; Trivigno V; Riedel L; Görne J; Wallingford JB; Hammes A; Feistel K
    Development; 2021 Jan; 148(2):. PubMed ID: 33500317
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Convergent extension, planar-cell-polarity signalling and initiation of mouse neural tube closure.
    Ybot-Gonzalez P; Savery D; Gerrelli D; Signore M; Mitchell CE; Faux CH; Greene ND; Copp AJ
    Development; 2007 Feb; 134(4):789-99. PubMed ID: 17229766
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Par3 interacts with Prickle3 to generate apical PCP complexes in the vertebrate neural plate.
    Chuykin I; Ossipova O; Sokol SY
    Elife; 2018 Sep; 7():. PubMed ID: 30256191
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Development of the vertebrate central nervous system: formation of the neural tube.
    Greene ND; Copp AJ
    Prenat Diagn; 2009 Apr; 29(4):303-11. PubMed ID: 19206138
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Loss of SHROOM3 affects neuroepithelial cell shape through regulating cytoskeleton proteins in cynomolgus monkey organoids.
    Li P; Zhang T; Wu R; Zhang JY; Zhuo Y; Li SG; Wang JJ; Guo WT; Wang ZB; Chen YC
    Zool Res; 2024 Mar; 45(2):233-241. PubMed ID: 38287904
    [TBL] [Abstract][Full Text] [Related]  

  • 39. β-catenin regulates Pax3 and Cdx2 for caudal neural tube closure and elongation.
    Zhao T; Gan Q; Stokes A; Lassiter RN; Wang Y; Chan J; Han JX; Pleasure DE; Epstein JA; Zhou CJ
    Development; 2014 Jan; 141(1):148-57. PubMed ID: 24284205
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Shroom3 functions downstream of planar cell polarity to regulate myosin II distribution and cellular organization during neural tube closure.
    McGreevy EM; Vijayraghavan D; Davidson LA; Hildebrand JD
    Biol Open; 2015 Jan; 4(2):186-96. PubMed ID: 25596276
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.