These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 34029584)

  • 1. Efficient sensing of saccharin through interference synthesis of gum ghatti capped silver nanoparticles.
    Shehala ; Baranwal K; Malviya T; Dwivedi LM; Prabha M; Singh V
    Int J Biol Macromol; 2021 Jul; 182():2003-2018. PubMed ID: 34029584
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In situ generation of silver nanoparticles within crosslinked 3D guar gum networks for catalytic reduction.
    Zheng Y; Zhu Y; Tian G; Wang A
    Int J Biol Macromol; 2015 Feb; 73():39-44. PubMed ID: 25445685
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cellulose-polymer-Ag nanocomposite fibers for antibacterial fabrics/skin scaffolds.
    Raghavendra GM; Jayaramudu T; Varaprasad K; Sadiku R; Ray SS; Mohana Raju K
    Carbohydr Polym; 2013 Apr; 93(2):553-60. PubMed ID: 23499096
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chitosan-guar gum-silver nanoparticles hybrid matrix with immobilized enzymes for fabrication of beta-glucan and glucose sensing photometric flow injection system.
    Bagal-Kestwal DR; Kestwal RM; Hsieh WT; Chiang BH
    J Pharm Biomed Anal; 2014 Jan; 88():571-8. PubMed ID: 24200877
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Green synthesis of silver nanoparticles using cranberry powder aqueous extract: characterization and antimicrobial properties.
    Ashour AA; Raafat D; El-Gowelli HM; El-Kamel AH
    Int J Nanomedicine; 2015; 10():7207-21. PubMed ID: 26664112
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Green synthesis of biopolymer-silver nanoparticle nanocomposite: an optical sensor for ammonia detection.
    Pandey S; Goswami GK; Nanda KK
    Int J Biol Macromol; 2012 Nov; 51(4):583-9. PubMed ID: 22750580
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly stable silver nanoparticles containing guar gum modified dual network hydrogel for catalytic and biomedical applications.
    Deka R; Sarma S; Patar P; Gogoi P; Sarmah JK
    Carbohydr Polym; 2020 Nov; 248():116786. PubMed ID: 32919574
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microwave-assisted ultrafast synthesis of silver nanoparticles for detection of Hg²⁺.
    Ma Y; Pang Y; Liu F; Xu H; Shen X
    Spectrochim Acta A Mol Biomol Spectrosc; 2016 Jan; 153():206-11. PubMed ID: 26312737
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alginate-Mediated Synthesis of Hetero-Shaped Silver Nanoparticles and Their Hydrogen Peroxide Sensing Ability.
    Bhagyaraj S; Krupa I
    Molecules; 2020 Jan; 25(3):. PubMed ID: 31972997
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antibacterial activity of biogenic silver nanoparticles synthesized with gum ghatti and gum olibanum: a comparative study.
    Kora AJ; Sashidhar RB
    J Antibiot (Tokyo); 2015 Feb; 68(2):88-97. PubMed ID: 25138141
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrogen peroxide sensing and cytotoxicity activity of Acacia lignin stabilized silver nanoparticles.
    Aadil KR; Barapatre A; Meena AS; Jha H
    Int J Biol Macromol; 2016 Jan; 82():39-47. PubMed ID: 26434518
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gum kondagogu reduced/stabilized silver nanoparticles as direct colorimetric sensor for the sensitive detection of Hg²⁺ in aqueous system.
    Rastogi L; Sashidhar RB; Karunasagar D; Arunachalam J
    Talanta; 2014 Jan; 118():111-7. PubMed ID: 24274277
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Trimethyl chitosan-capped silver nanoparticles with positive surface charge: Their catalytic activity and antibacterial spectrum including multidrug-resistant strains of Acinetobacter baumannii.
    Chang TY; Chen CC; Cheng KM; Chin CY; Chen YH; Chen XA; Sun JR; Young JJ; Chiueh TS
    Colloids Surf B Biointerfaces; 2017 Jul; 155():61-70. PubMed ID: 28411476
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis and spectroscopic studies of stable aqueous dispersion of silver nanoparticles.
    El-Shishtawy RM; Asiri AM; Al-Otaibi MM
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Sep; 79(5):1505-10. PubMed ID: 21703920
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Environmentally sensitive silver nanoparticles of controlled size synthesized with PNIPAM as a nucleating and capping agent.
    Morones JR; Frey W
    Langmuir; 2007 Jul; 23(15):8180-6. PubMed ID: 17590029
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis of silver nanoparticles in chitosan, gelatin and chitosan/gelatin bionanocomposites by a chemical reducing agent and their characterization.
    Bin Ahmad M; Lim JJ; Shameli K; Ibrahim NA; Tay MY
    Molecules; 2011 Aug; 16(9):7237-48. PubMed ID: 21869751
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of gum ghatti (Anogeissus latifolia): a structural and rheological approach.
    Kaur L; Singh J; Singh H
    J Food Sci; 2009 Aug; 74(6):E328-32. PubMed ID: 19723196
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biogenic synthesis of multi-applicative silver nanoparticles by using Ziziphus Jujuba leaf extract.
    Gavade NL; Kadam AN; Suwarnkar MB; Ghodake VP; Garadkar KM
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Feb; 136 Pt B():953-60. PubMed ID: 25459621
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Green synthesis of silver nanoparticles using 4-acetamido-TEMPO-oxidized curdlan.
    Yan JK; Cai PF; Cao XQ; Ma HL; Zhang Q; Hu NZ; Zhao YZ
    Carbohydr Polym; 2013 Sep; 97(2):391-7. PubMed ID: 23911462
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A facile and green route to silver nanoparticles in water.
    Wang Y; Zhang Y; Du W; Wu C; Zhao J
    J Nanosci Nanotechnol; 2010 Oct; 10(10):6439-45. PubMed ID: 21137744
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.