BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 34029637)

  • 1. Gene expression changes contribute to stemness and therapy resistance of relapsed acute myeloid leukemia: roles of SOCS2, CALCRL, MTSS1, and KDM6A.
    Grandits AM; Wieser R
    Exp Hematol; 2021 Jul; 99():1-11. PubMed ID: 34029637
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Downregulation of MTSS1 in acute myeloid leukemia is associated with a poor prognosis, chemotherapy resistance, and disease aggressiveness.
    Grandits AM; Nguyen CH; Schlerka A; Hackl H; Sill H; Etzler J; Heyes E; Stoiber D; Grebien F; Heller G; Wieser R
    Leukemia; 2021 Oct; 35(10):2827-2839. PubMed ID: 33782537
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CGRP Signaling via CALCRL Increases Chemotherapy Resistance and Stem Cell Properties in Acute Myeloid Leukemia.
    Gluexam T; Grandits AM; Schlerka A; Nguyen CH; Etzler J; Finkes T; Fuchs M; Scheid C; Heller G; Hackl H; Harrer N; Sill H; Koller E; Stoiber D; Sommergruber W; Wieser R
    Int J Mol Sci; 2019 Nov; 20(23):. PubMed ID: 31756985
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification and validation of CALCRL-associated prognostic genes in acute myeloid leukemia.
    Huang Z; Zhang H; Xing C; Zhang L; Zhu H; Deng Z; Yin L; Dong E; Wang C; Peng H
    Gene; 2022 Jan; 809():146009. PubMed ID: 34655717
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adrenomedullin-CALCRL axis controls relapse-initiating drug tolerant acute myeloid leukemia cells.
    Larrue C; Guiraud N; Mouchel PL; Dubois M; Farge T; Gotanègre M; Bosc C; Saland E; Nicolau-Travers ML; Sabatier M; Serhan N; Sahal A; Boet E; Mouche S; Heydt Q; Aroua N; Stuani L; Kaoma T; Angenendt L; Mikesch JH; Schliemann C; Vergez F; Tamburini J; Récher C; Sarry JE
    Nat Commun; 2021 Jan; 12(1):422. PubMed ID: 33462236
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Loss of KDM6A confers drug resistance in acute myeloid leukemia.
    Stief SM; Hanneforth AL; Weser S; Mattes R; Carlet M; Liu WH; Bartoschek MD; Domínguez Moreno H; Oettle M; Kempf J; Vick B; Ksienzyk B; Tizazu B; Rothenberg-Thurley M; Quentmeier H; Hiddemann W; Vosberg S; Greif PA; Metzeler KH; Schotta G; Bultmann S; Jeremias I; Leonhardt H; Spiekermann K
    Leukemia; 2020 Jan; 34(1):50-62. PubMed ID: 31201358
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calcitonin receptor-like (CALCRL) is a marker of stemness and an independent predictor of outcome in pediatric AML.
    Angenendt L; Wöste M; Mikesch JH; Arteaga MF; Angenendt A; Sandmann S; Berdel WE; Lenz G; Dugas M; Meshinchi S; Schliemann C; Rössig C
    Blood Adv; 2021 Nov; 5(21):4413-4421. PubMed ID: 34559198
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RepSox slows decay of CD34+ acute myeloid leukemia cells and decreases T cell immunoglobulin mucin-3 expression.
    Jajosky AN; Coad JE; Vos JA; Martin KH; Senft JR; Wenger SL; Gibson LF
    Stem Cells Transl Med; 2014 Jul; 3(7):836-48. PubMed ID: 24855276
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prognostic value of
    Aref S; Sabry M; Menshawy NE; Aref A; Tantawy AE; Ayed M; El-Sebaie A
    Biomark Med; 2023 Nov; 17(21):889-898. PubMed ID: 38230972
    [No Abstract]   [Full Text] [Related]  

  • 10. Identification of the Adapter Molecule MTSS1 as a Potential Oncogene-Specific Tumor Suppressor in Acute Myeloid Leukemia.
    Schemionek M; Kharabi Masouleh B; Klaile Y; Krug U; Hebestreit K; Schubert C; Dugas M; Büchner T; Wörmann B; Hiddemann W; Berdel WE; Brümmendorf TH; Müller-Tidow C; Koschmieder S
    PLoS One; 2015; 10(5):e0125783. PubMed ID: 25996952
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The neuropeptide receptor calcitonin receptor-like (CALCRL) is a potential therapeutic target in acute myeloid leukemia.
    Angenendt L; Bormann E; Pabst C; Alla V; Görlich D; Braun L; Dohlich K; Schwöppe C; Bohlander SK; Arteaga MF; Wethmar K; Hartmann W; Angenendt A; Kessler T; Mesters RM; Stelljes M; Rothenberg-Thurley M; Spiekermann K; Hébert J; Sauvageau G; Valk PJM; Löwenberg B; Serve H; Müller-Tidow C; Lenz G; Wörmann BJ; Sauerland MC; Hiddemann W; Berdel WE; Krug U; Metzeler KH; Mikesch JH; Herold T; Schliemann C
    Leukemia; 2019 Dec; 33(12):2830-2841. PubMed ID: 31182782
    [TBL] [Abstract][Full Text] [Related]  

  • 12. KDM6 and KDM4 histone lysine demethylases emerge as molecular therapeutic targets in human acute myeloid leukemia.
    Boila LD; Chatterjee SS; Banerjee D; Sengupta A
    Exp Hematol; 2018 Feb; 58():44-51.e7. PubMed ID: 29111428
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular and genetic alterations associated with therapy resistance and relapse of acute myeloid leukemia.
    Hackl H; Astanina K; Wieser R
    J Hematol Oncol; 2017 Feb; 10(1):51. PubMed ID: 28219393
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SOCS2 Controls Proliferation and Stemness of Hematopoietic Cells under Stress Conditions and Its Deregulation Marks Unfavorable Acute Leukemias.
    Vitali C; Bassani C; Chiodoni C; Fellini E; Guarnotta C; Miotti S; Sangaletti S; Fuligni F; De Cecco L; Piccaluga PP; Colombo MP; Tripodo C
    Cancer Res; 2015 Jun; 75(11):2387-99. PubMed ID: 25858143
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Therapeutic targeting of leukemic stem cells in acute myeloid leukemia - the biological background for possible strategies.
    Bruserud Ø; Aasebø E; Hernandez-Valladares M; Tsykunova G; Reikvam H
    Expert Opin Drug Discov; 2017 Oct; 12(10):1053-1065. PubMed ID: 28748730
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A 17-gene stemness score for rapid determination of risk in acute leukaemia.
    Ng SW; Mitchell A; Kennedy JA; Chen WC; McLeod J; Ibrahimova N; Arruda A; Popescu A; Gupta V; Schimmer AD; Schuh AC; Yee KW; Bullinger L; Herold T; Görlich D; Büchner T; Hiddemann W; Berdel WE; Wörmann B; Cheok M; Preudhomme C; Dombret H; Metzeler K; Buske C; Löwenberg B; Valk PJ; Zandstra PW; Minden MD; Dick JE; Wang JC
    Nature; 2016 Dec; 540(7633):433-437. PubMed ID: 27926740
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gene expression profiles associated with pediatric relapsed AML.
    Bachas C; Schuurhuis GJ; Zwaan CM; van den Heuvel-Eibrink MM; den Boer ML; de Bont ES; Kwidama ZJ; Reinhardt D; Creutzig U; de Haas V; Kaspers GJ; Cloos J
    PLoS One; 2015; 10(4):e0121730. PubMed ID: 25849371
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mesenchymal stromal cells contribute to quiescence of therapy-resistant leukemic cells in acute myeloid leukemia.
    Wang W; Bochtler T; Wuchter P; Manta L; He H; Eckstein V; Ho AD; Lutz C
    Eur J Haematol; 2017 Nov; 99(5):392-398. PubMed ID: 28800175
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SOCS2 is part of a highly prognostic 4-gene signature in AML and promotes disease aggressiveness.
    Nguyen CH; Glüxam T; Schlerka A; Bauer K; Grandits AM; Hackl H; Dovey O; Zöchbauer-Müller S; Cooper JL; Vassiliou GS; Stoiber D; Wieser R; Heller G
    Sci Rep; 2019 Jun; 9(1):9139. PubMed ID: 31235852
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evolving insights on histone methylome regulation in human acute myeloid leukemia pathogenesis and targeted therapy.
    Boila LD; Sengupta A
    Exp Hematol; 2020 Dec; 92():19-31. PubMed ID: 32950598
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.