BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 34029806)

  • 1. The anaerobic oxidation of methane in paddy soil by ferric iron and nitrate, and the microbial communities involved.
    Luo D; Meng X; Zheng N; Li Y; Yao H; Chapman SJ
    Sci Total Environ; 2021 Sep; 788():147773. PubMed ID: 34029806
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Effect of gradual increase of atmospheric CO
    Huang HC; Jin JH; Shen LD; Tian MH; Liu X; Yang WT; Hu ZH
    Ying Yong Sheng Tai Xue Bao; 2022 Sep; 33(9):2441-2449. PubMed ID: 36131660
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Long-term effects of soluble and insoluble ferric irons on anaerobic oxidation of methane in paddy soil.
    He Z; Xu Y; Zhu Y; Feng J; Zhang D; Pan X
    Chemosphere; 2023 Mar; 317():137901. PubMed ID: 36669540
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolic potential of anaerobic methane oxidizing archaea for a broad spectrum of electron acceptors.
    Glodowska M; Welte CU; Kurth JM
    Adv Microb Physiol; 2022; 80():157-201. PubMed ID: 35489791
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Equal importance of humic acids and nitrate in driving anaerobic oxidation of methane in paddy soils.
    Bai Y; Wang Y; Shen L; Shang B; Ji Y; Ren B; Yang W; Yang Y; Ma Z; Feng Z
    Sci Total Environ; 2024 Feb; 912():169311. PubMed ID: 38103608
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced anaerobic oxidation of methane with the coexistence of iron oxides and sulfate fertilizer in paddy soil.
    He Z; Shen J; Zhu Y; Feng J; Pan X
    Chemosphere; 2023 Jul; 329():138623. PubMed ID: 37030346
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Active pathways of anaerobic methane oxidation across contrasting riverbeds.
    Shen LD; Ouyang L; Zhu Y; Trimmer M
    ISME J; 2019 Mar; 13(3):752-766. PubMed ID: 30375505
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Iron-based passivator mitigates the coupling process of anaerobic methane oxidation and arsenate reduction in paddy soils.
    Yang J; Zou L; Zheng L; Yuan Z; Huang K; Gustave W; Shi L; Tang X; Liu X; Xu J
    Environ Pollut; 2022 Nov; 313():120182. PubMed ID: 36152707
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enrichment of anaerobic nitrate-dependent methanotrophic 'Candidatus Methanoperedens nitroreducens' archaea from an Italian paddy field soil.
    Vaksmaa A; Guerrero-Cruz S; van Alen TA; Cremers G; Ettwig KF; Lüke C; Jetten MSM
    Appl Microbiol Biotechnol; 2017 Sep; 101(18):7075-7084. PubMed ID: 28779290
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Humic substances as electron acceptors for anaerobic oxidation of methane driven by ANME-2d.
    Bai YN; Wang XN; Wu J; Lu YZ; Fu L; Zhang F; Lau TC; Zeng RJ
    Water Res; 2019 Nov; 164():114935. PubMed ID: 31387057
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Community Composition and Ultrastructure of a Nitrate-Dependent Anaerobic Methane-Oxidizing Enrichment Culture.
    Gambelli L; Guerrero-Cruz S; Mesman RJ; Cremers G; Jetten MSM; Op den Camp HJM; Kartal B; Lueke C; van Niftrik L
    Appl Environ Microbiol; 2018 Feb; 84(3):. PubMed ID: 29150508
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metal-dependent anaerobic methane oxidation in marine sediment: Insights from marine settings and other systems.
    Liang L; Wang Y; Sivan O; Wang F
    Sci China Life Sci; 2019 Oct; 62(10):1287-1295. PubMed ID: 31209798
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Temperature sensitivity of anaerobic methane oxidation versus methanogenesis in paddy soil: Implications for the CH
    Fan L; Dippold MA; Thiel V; Ge T; Wu J; Kuzyakov Y; Dorodnikov M
    Glob Chang Biol; 2022 Jan; 28(2):654-664. PubMed ID: 34653297
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anaerobic Methane Oxidation Driven by Microbial Reduction of Natural Organic Matter in a Tropical Wetland.
    Valenzuela EI; Prieto-Davó A; López-Lozano NE; Hernández-Eligio A; Vega-Alvarado L; Juárez K; García-González AS; López MG; Cervantes FJ
    Appl Environ Microbiol; 2017 Jun; 83(11):. PubMed ID: 28341676
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Methane emission suppression in flooded soil from Amazonia.
    Gabriel GVM; Oliveira LC; Barros DJ; Bento MS; Neu V; Toppa RH; Carmo JB; Navarrete AA
    Chemosphere; 2020 Jul; 250():126263. PubMed ID: 32088616
    [TBL] [Abstract][Full Text] [Related]  

  • 16. First evidence for anaerobic oxidation of methane process in landfill cover soils: Activity and responsible microorganisms.
    Xu S; Zhang H
    Sci Total Environ; 2022 Oct; 841():156790. PubMed ID: 35724792
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role and regulation of anaerobic methane oxidation catalyzed by NC10 bacteria and ANME-2d archaea in various ecosystems.
    Yang WT; Shen LD; Bai YN
    Environ Res; 2023 Feb; 219():115174. PubMed ID: 36584837
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Soil nitrogen substances and denitrifying communities regulate the anaerobic oxidation of methane in wetlands of Yellow River Delta, China.
    Wang Z; Li K; Shen X; Yan F; Zhao X; Xin Y; Ji L; Xiang Q; Xu X; Li D; Ran J; Xu X; Chen Q
    Sci Total Environ; 2023 Jan; 857(Pt 2):159439. PubMed ID: 36252671
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simultaneous nitrate and sulfate dependent anaerobic oxidation of methane linking carbon, nitrogen and sulfur cycles.
    Nie WB; Ding J; Xie GJ; Tan X; Lu Y; Peng L; Liu BF; Xing DF; Yuan Z; Ren N
    Water Res; 2021 Apr; 194():116928. PubMed ID: 33618110
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electron acceptors for anaerobic oxidation of methane drive microbial community structure and diversity in mud volcanoes.
    Ren G; Ma A; Zhang Y; Deng Y; Zheng G; Zhuang X; Zhuang G; Fortin D
    Environ Microbiol; 2018 Jul; 20(7):2370-2385. PubMed ID: 29624877
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.