These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

332 related articles for article (PubMed ID: 34029899)

  • 1. Recent advances in biosensors for antibiotic detection: Selectivity and signal amplification with nanomaterials.
    Zhou C; Zou H; Sun C; Li Y
    Food Chem; 2021 Nov; 361():130109. PubMed ID: 34029899
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent advances in nanomaterial-based biosensors for antibiotics detection.
    Lan L; Yao Y; Ping J; Ying Y
    Biosens Bioelectron; 2017 May; 91():504-514. PubMed ID: 28082239
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Minireview for Recent Development of Nanomaterial-Based Detection of Antibiotics.
    Hong J; Su M; Zhao K; Zhou Y; Wang J; Zhou SF; Lin X
    Biosensors (Basel); 2023 Feb; 13(3):. PubMed ID: 36979539
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrochemical Biosensors for the Detection of Antibiotics in Milk: Recent Trends and Future Perspectives.
    Singh B; Bhat A; Dutta L; Pati KR; Korpan Y; Dahiya I
    Biosensors (Basel); 2023 Sep; 13(9):. PubMed ID: 37754101
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanomaterial-based fluorescent biosensors for the detection of antibiotics in foodstuffs: A review.
    Singh H; Thakur B; Bhardwaj SK; Khatri M; Kim KH; Bhardwaj N
    Food Chem; 2023 Nov; 426():136657. PubMed ID: 37393822
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent advances in nanomaterial-based electrochemical detection of antibiotics: Challenges and future perspectives.
    Joshi A; Kim KH
    Biosens Bioelectron; 2020 Apr; 153():112046. PubMed ID: 32056661
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Technological advancement in electrochemical biosensor based detection of Organophosphate pesticide chlorpyrifos in the environment: A review of status and prospects.
    Uniyal S; Sharma RK
    Biosens Bioelectron; 2018 Sep; 116():37-50. PubMed ID: 29857260
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanotechnology-Enhanced No-Wash Biosensors for in Vitro Diagnostics of Cancer.
    Huang X; Liu Y; Yung B; Xiong Y; Chen X
    ACS Nano; 2017 Jun; 11(6):5238-5292. PubMed ID: 28590117
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functionalities of electrochemical fluoroquinolone sensors and biosensors.
    Nepfumbada C; Mthombeni NH; Sigwadi R; Ajayi RF; Feleni U; Mamba BB
    Environ Sci Pollut Res Int; 2024 Jan; 31(3):3394-3412. PubMed ID: 38110684
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent Biosensors for Detection of Antibiotics in Animal Derived Food.
    Khan MZH
    Crit Rev Anal Chem; 2022; 52(4):780-790. PubMed ID: 33040606
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A state-of-the-art review on graphene-based nanomaterials to determine antibiotics by electrochemical techniques.
    Tran TTT; Do MN; Dang TNH; Tran QH; Le VT; Dao AQ; Vasseghian Y
    Environ Res; 2022 May; 208():112744. PubMed ID: 35065928
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recent development of antibiotic detection in food and environment: the combination of sensors and nanomaterials.
    Sun Y; Zhao J; Liang L
    Mikrochim Acta; 2021 Jan; 188(1):21. PubMed ID: 33404741
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent Advances in Nanotechnology-Based Biosensors Development for Detection of Arsenic, Lead, Mercury, and Cadmium.
    Salek Maghsoudi A; Hassani S; Mirnia K; Abdollahi M
    Int J Nanomedicine; 2021; 16():803-832. PubMed ID: 33568907
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanotechnology-Enabled Biosensors: A Review of Fundamentals, Design Principles, Materials, and Applications.
    Ramesh M; Janani R; Deepa C; Rajeshkumar L
    Biosensors (Basel); 2022 Dec; 13(1):. PubMed ID: 36671875
    [TBL] [Abstract][Full Text] [Related]  

  • 15. State of the art and future research directions of materials science applied to electrochemical biosensor developments.
    Kny E; Hasler R; Luczak W; Knoll W; Szunerits S; Kleber C
    Anal Bioanal Chem; 2024 Apr; 416(9):2247-2259. PubMed ID: 38006442
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Liposomes and lipid bilayers in biosensors.
    Mazur F; Bally M; Städler B; Chandrawati R
    Adv Colloid Interface Sci; 2017 Nov; 249():88-99. PubMed ID: 28602208
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanostructured titanium oxide hybrids-based electrochemical biosensors for healthcare applications.
    Shetti NP; Bukkitgar SD; Reddy KR; Reddy CV; Aminabhavi TM
    Colloids Surf B Biointerfaces; 2019 Jun; 178():385-394. PubMed ID: 30903977
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optical and Electrochemical Sensors and Biosensors for the Detection of Quinolones.
    Majdinasab M; Mitsubayashi K; Marty JL
    Trends Biotechnol; 2019 Aug; 37(8):898-915. PubMed ID: 30777309
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Review of Electrochemical DNA Biosensors for Detecting Food Borne Pathogens.
    Wu Q; Zhang Y; Yang Q; Yuan N; Zhang W
    Sensors (Basel); 2019 Nov; 19(22):. PubMed ID: 31718098
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Growing Interest in Development of Innovative Optical Aptasensors for the Detection of Antimicrobial Residues in Food Products.
    Gaudin V
    Biosensors (Basel); 2020 Mar; 10(3):. PubMed ID: 32138274
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.