These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 34029902)

  • 1. Rapid assessment of silver nanoparticle migration from food containers into food simulants using a qualitative method.
    Corps Ricardo AI; Avendaño García S; Guzmán Bernardo FJ; Ríos Á; Rodríguez Martín-Doimeadios RC
    Food Chem; 2021 Nov; 361():130091. PubMed ID: 34029902
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Silver speciation and characterization of nanoparticles released from plastic food containers by single particle ICPMS.
    Ramos K; Gómez-Gómez MM; Cámara C; Ramos L
    Talanta; 2016 May; 151():83-90. PubMed ID: 26946013
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of aqueous food simulants on potential nanoparticle detection in migration studies involving nanoenabled food-contact substances.
    Addo Ntim S; Thomas TA; Noonan GO
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2016 May; 33(5):905-12. PubMed ID: 27049753
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection, Identification and Size Distribution of Silver Nanoparticles (AgNPs) in Milk and Migration Study for Breast Milk Storage Bags.
    Li B; Chua SL; Yu D; Chan SH; Li A
    Molecules; 2022 Apr; 27(8):. PubMed ID: 35458739
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization and quantification of silver nanoparticles in nutraceuticals and beverages by asymmetric flow field flow fractionation coupled with inductively coupled plasma mass spectrometry.
    Ramos K; Ramos L; Cámara C; Gómez-Gómez MM
    J Chromatogr A; 2014 Dec; 1371():227-36. PubMed ID: 25456601
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detection and characterization of silver nanoparticles in chicken meat by asymmetric flow field flow fractionation with detection by conventional or single particle ICP-MS.
    Loeschner K; Navratilova J; Købler C; Mølhave K; Wagner S; von der Kammer F; Larsen EH
    Anal Bioanal Chem; 2013 Oct; 405(25):8185-95. PubMed ID: 23887279
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monitoring the Fate and Transformation of Silver Nanoparticles in Natural Waters.
    Furtado LM; Bundschuh M; Metcalfe CD
    Bull Environ Contam Toxicol; 2016 Oct; 97(4):449-55. PubMed ID: 27437947
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Screening-confirmation strategy for nanomaterials involving spectroscopic analytical techniques and its application to the control of silver nanoparticles in pastry samples.
    Corps Ricardo AI; Rodríguez Fariñas N; Guzmán Bernardo FJ; Rodríguez Martín-Doimeadios RC; Ríos Á
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Feb; 246():119015. PubMed ID: 33049466
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In-house validation of a method for determination of silver nanoparticles in chicken meat based on asymmetric flow field-flow fractionation and inductively coupled plasma mass spectrometric detection.
    Loeschner K; Navratilova J; Grombe R; Linsinger TP; Købler C; Mølhave K; Larsen EH
    Food Chem; 2015 Aug; 181():78-84. PubMed ID: 25794724
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Size and mass determination of silver nanoparticles in an aqueous matrix using asymmetric flow field flow fractionation coupled to inductively coupled plasma mass spectrometer and ultraviolet-visible detectors.
    Geiss O; Cascio C; Gilliland D; Franchini F; Barrero-Moreno J
    J Chromatogr A; 2013 Dec; 1321():100-8. PubMed ID: 24238704
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessment of the migration potential of nanosilver from nanoparticle-coated low-density polyethylene food packaging into food simulants.
    Hannon JC; Kerry JP; Cruz-Romero M; Azlin-Hasim S; Morris M; Cummins E
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2016; 33(1):167-78. PubMed ID: 26523861
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Migration of silver from nanosilver-polyethylene composite packaging into food simulants.
    Song H; Li B; Lin QB; Wu HJ; Chen Y
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2011 Dec; 28(12):1758-62. PubMed ID: 21985020
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Asymmetric Flow-Field Flow Fractionation Hyphenated ICP-MS as an Alternative to Cloud Point Extraction for Quantification of Silver Nanoparticles and Silver Speciation: Application for Nanoparticles with a Protein Corona.
    Mudalige TK; Qu H; Linder SW
    Anal Chem; 2015 Jul; 87(14):7395-401. PubMed ID: 26095720
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Human exposure assessment of silver and copper migrating from an antimicrobial nanocoated packaging material into an acidic food simulant.
    Hannon JC; Kerry JP; Cruz-Romero M; Azlin-Hasim S; Morris M; Cummins E
    Food Chem Toxicol; 2016 Sep; 95():128-36. PubMed ID: 27402098
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Potential silver nanoparticles migration from commercially available polymeric baby products into food simulants.
    Choi JI; Chae SJ; Kim JM; Choi JC; Park SJ; Choi HJ; Bae H; Park HJ
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2018 May; 35(5):996-1005. PubMed ID: 29210600
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detection and characterization of silver nanoparticles in aqueous matrices using asymmetric-flow field flow fractionation with inductively coupled plasma mass spectrometry.
    Hoque ME; Khosravi K; Newman K; Metcalfe CD
    J Chromatogr A; 2012 Apr; 1233():109-15. PubMed ID: 22381889
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of three analytical methods to measure the size of silver nanoparticles in real environmental water and wastewater samples.
    Chang YJ; Shih YH; Su CH; Ho HC
    J Hazard Mater; 2017 Jan; 322(Pt A):95-104. PubMed ID: 27041441
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Migration and characterisation of nanosilver from food containers by AF⁴-ICP-MS.
    Artiaga G; Ramos K; Ramos L; Cámara C; Gómez-Gómez M
    Food Chem; 2015 Jan; 166():76-85. PubMed ID: 25053031
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of consumer use practices on nanosilver release from commercially available food contact materials.
    Addo Ntim S; Norris S; Goodwin DG; Breffke J; Scott K; Sung L; Thomas TA; Noonan GO
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2018 Nov; 35(11):2279-2290. PubMed ID: 30352016
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Extraction Method Development for Quantitative Detection of Silver Nanoparticles in Environmental Soils and Sediments by Single Particle Inductively Coupled Plasma Mass Spectrometry.
    Li L; Wang Q; Yang Y; Luo L; Ding R; Yang ZG; Li HP
    Anal Chem; 2019 Aug; 91(15):9442-9450. PubMed ID: 31248253
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.