These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
311 related articles for article (PubMed ID: 34029915)
1. The protein corona hampers the transcytosis of transferrin-modified nanoparticles through blood-brain barrier and attenuates their targeting ability to brain tumor. Xiao W; Wang Y; Zhang H; Liu Y; Xie R; He X; Zhou Y; Liang L; Gao H Biomaterials; 2021 Jul; 274():120888. PubMed ID: 34029915 [TBL] [Abstract][Full Text] [Related]
2. Increased brain uptake of targeted nanoparticles by adding an acid-cleavable linkage between transferrin and the nanoparticle core. Clark AJ; Davis ME Proc Natl Acad Sci U S A; 2015 Oct; 112(40):12486-91. PubMed ID: 26392563 [TBL] [Abstract][Full Text] [Related]
3. Protein Coronas Derived from Mucus Act as Both Spear and Shield to Regulate Transferrin Functionalized Nanoparticle Transcellular Transport in Enterocytes. Yang D; Feng Y; Yuan Y; Zhang L; Zhou Y; Midgley AC; Wang Y; Liu N; Li G; Yao X; Liu D ACS Nano; 2024 Mar; 18(10):7455-7472. PubMed ID: 38417159 [TBL] [Abstract][Full Text] [Related]
5. Transcytosis of protein through the mammalian cerebral epithelium and endothelium. III. Receptor-mediated transcytosis through the blood-brain barrier of blood-borne transferrin and antibody against the transferrin receptor. Broadwell RD; Baker-Cairns BJ; Friden PM; Oliver C; Villegas JC Exp Neurol; 1996 Nov; 142(1):47-65. PubMed ID: 8912898 [TBL] [Abstract][Full Text] [Related]
6. Development of antibody-modified chitosan nanoparticles for the targeted delivery of siRNA across the blood-brain barrier as a strategy for inhibiting HIV replication in astrocytes. Gu J; Al-Bayati K; Ho EA Drug Deliv Transl Res; 2017 Aug; 7(4):497-506. PubMed ID: 28315051 [TBL] [Abstract][Full Text] [Related]
7. Transferrin receptors-targeting nanocarriers for efficient targeted delivery and transcytosis of drugs into the brain tumors: a review of recent advancements and emerging trends. Choudhury H; Pandey M; Chin PX; Phang YL; Cheah JY; Ooi SC; Mak KK; Pichika MR; Kesharwani P; Hussain Z; Gorain B Drug Deliv Transl Res; 2018 Oct; 8(5):1545-1563. PubMed ID: 29916012 [TBL] [Abstract][Full Text] [Related]
8. Transcytosis and brain uptake of transferrin-containing nanoparticles by tuning avidity to transferrin receptor. Wiley DT; Webster P; Gale A; Davis ME Proc Natl Acad Sci U S A; 2013 May; 110(21):8662-7. PubMed ID: 23650374 [TBL] [Abstract][Full Text] [Related]
9. Intracellular sorting and transcytosis of the rat transferrin receptor antibody OX26 across the blood-brain barrier in vitro is dependent on its binding affinity. Haqqani AS; Thom G; Burrell M; Delaney CE; Brunette E; Baumann E; Sodja C; Jezierski A; Webster C; Stanimirovic DB J Neurochem; 2018 Sep; 146(6):735-752. PubMed ID: 29877588 [TBL] [Abstract][Full Text] [Related]
10. Functionalized PLGA nanoparticles prepared by nano-emulsion templating interact selectively with proteins involved in the transport through the blood-brain barrier. Monge M; Fornaguera C; Quero C; Dols-Perez A; Calderó G; Grijalvo S; García-Celma MJ; Rodríguez-Abreu C; Solans C Eur J Pharm Biopharm; 2020 Nov; 156():155-164. PubMed ID: 32927077 [TBL] [Abstract][Full Text] [Related]
11. Overcoming Mfsd2a-Mediated Low Transcytosis to Boost Nanoparticle Delivery to Brain for Chemotherapy of Brain Metastases. Ju X; Miao T; Chen H; Ni J; Han L Adv Healthc Mater; 2021 May; 10(9):e2001997. PubMed ID: 33738958 [TBL] [Abstract][Full Text] [Related]
12. Lipoprotein imitating nanoparticles: Lecithin coating binds ApoE and mediates non-lysosomal uptake leading to transcytosis over the blood-brain barrier. Wünsch A; Mulac D; Langer K Int J Pharm; 2020 Nov; 589():119821. PubMed ID: 32861770 [TBL] [Abstract][Full Text] [Related]
13. Ligand Size and Conformation Affect the Behavior of Nanoparticles Coated with in Vitro and in Vivo Protein Corona. Zhang H; Wu T; Yu W; Ruan S; He Q; Gao H ACS Appl Mater Interfaces; 2018 Mar; 10(10):9094-9103. PubMed ID: 29473734 [TBL] [Abstract][Full Text] [Related]
14. Unmasking CSF protein corona: Effect on targeting capacity of nanoparticles. Wang Y; Zhang H; Xiao W; Liu Y; Zhou Y; He X; Xia X; Gong T; Wang L; Gao H J Control Release; 2021 May; 333():352-361. PubMed ID: 33823221 [TBL] [Abstract][Full Text] [Related]
15. Evolution of Nanoparticle Protein Corona across the Blood-Brain Barrier. Cox A; Andreozzi P; Dal Magro R; Fiordaliso F; Corbelli A; Talamini L; Chinello C; Raimondo F; Magni F; Tringali M; Krol S; Jacob Silva P; Stellacci F; Masserini M; Re F ACS Nano; 2018 Jul; 12(7):7292-7300. PubMed ID: 29953205 [TBL] [Abstract][Full Text] [Related]
17. Versatile hollow COF nanospheres via manipulating transferrin corona for precise glioma-targeted drug delivery. Huo T; Yang Y; Qian M; Jiang H; Du Y; Zhang X; Xie Y; Huang R Biomaterials; 2020 Nov; 260():120305. PubMed ID: 32861016 [TBL] [Abstract][Full Text] [Related]
18. Influence of protein corona and caveolae-mediated endocytosis on nanoparticle uptake and transcytosis. Ho YT; Kamm RD; Kah JCY Nanoscale; 2018 Jul; 10(26):12386-12397. PubMed ID: 29926047 [TBL] [Abstract][Full Text] [Related]
19. LRP1-upregulated nanoparticles for efficiently conquering the blood-brain barrier and targetedly suppressing multifocal and infiltrative brain metastases. Guo Q; Zhu Q; Miao T; Tao J; Ju X; Sun Z; Li H; Xu G; Chen H; Han L J Control Release; 2019 Jun; 303():117-129. PubMed ID: 31026546 [TBL] [Abstract][Full Text] [Related]
20. A filter-free blood-brain barrier model to quantitatively study transendothelial delivery of nanoparticles by fluorescence spectroscopy. De Jong E; Williams DS; Abdelmohsen LKEA; Van Hest JCM; Zuhorn IS J Control Release; 2018 Nov; 289():14-22. PubMed ID: 30243824 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]