BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 34030051)

  • 1. Association of short- and long-latency afferent inhibition with human behavior.
    Turco CV; Toepp SL; Foglia SD; Dans PW; Nelson AJ
    Clin Neurophysiol; 2021 Jul; 132(7):1462-1480. PubMed ID: 34030051
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reliability of transcranial magnetic stimulation measures of afferent inhibition.
    Turco CV; Pesevski A; McNicholas PD; Beaulieu LD; Nelson AJ
    Brain Res; 2019 Nov; 1723():146394. PubMed ID: 31425680
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The distribution and reliability of TMS-evoked short- and long-latency afferent interactions.
    Toepp SL; Turco CV; Rehsi RS; Nelson AJ
    PLoS One; 2021; 16(12):e0260663. PubMed ID: 34905543
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of cutaneous and proprioceptive inputs in sensorimotor integration and plasticity occurring in the facial primary motor cortex.
    Pilurzi G; Ginatempo F; Mercante B; Cattaneo L; Pavesi G; Rothwell JC; Deriu F
    J Physiol; 2020 Feb; 598(4):839-851. PubMed ID: 31876950
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of water immersion on short- and long-latency afferent inhibition, short-interval intracortical inhibition, and intracortical facilitation.
    Sato D; Yamashiro K; Yoshida T; Onishi H; Shimoyama Y; Maruyama A
    Clin Neurophysiol; 2013 Sep; 124(9):1846-52. PubMed ID: 23688919
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modulation of the Direction and Magnitude of Hebbian Plasticity in Human Motor Cortex by Stimulus Intensity and Concurrent Inhibition.
    Cash RFH; Jegatheeswaran G; Ni Z; Chen R
    Brain Stimul; 2017; 10(1):83-90. PubMed ID: 27615792
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental environment improves the reliability of short-latency afferent inhibition.
    Ramdeo KR; Rehsi RS; Foglia SD; Turco CV; Toepp SL; Nelson AJ
    PLoS One; 2023; 18(2):e0281867. PubMed ID: 36812217
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Short-and long-latency afferent inhibition of the human leg motor cortex by H-reflex subthreshold electrical stimulation at the popliteal fossa.
    Kato T; Sasaki A; Nakazawa K
    Exp Brain Res; 2023 Jan; 241(1):249-261. PubMed ID: 36481937
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biological sex differences in afferent-mediated inhibition of motor responses evoked by TMS.
    Turco CV; Rehsi RS; Locke MB; Nelson AJ
    Brain Res; 2021 Nov; 1771():147657. PubMed ID: 34509460
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modulation of long-latency afferent inhibition by the amplitude of sensory afferent volley.
    Turco CV; El-Sayes J; Fassett HJ; Chen R; Nelson AJ
    J Neurophysiol; 2017 Jul; 118(1):610-618. PubMed ID: 28446579
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interactions between short-interval intracortical inhibition and short-latency afferent inhibition in human motor cortex.
    Alle H; Heidegger T; Kriváneková L; Ziemann U
    J Physiol; 2009 Nov; 587(Pt 21):5163-76. PubMed ID: 19752113
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Short- and long-latency afferent inhibition; uses, mechanisms and influencing factors.
    Turco CV; El-Sayes J; Savoie MJ; Fassett HJ; Locke MB; Nelson AJ
    Brain Stimul; 2018; 11(1):59-74. PubMed ID: 28964754
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Low-intensity repetitive paired associative stimulation targeting the motor hand area at theta frequency causes a lasting reduction in corticospinal excitability.
    Rizzo V; Mastroeni C; Maggio R; Terranova C; Girlanda P; Siebner HR; Quartarone A
    Clin Neurophysiol; 2020 Oct; 131(10):2402-2409. PubMed ID: 32828043
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modulation of short-latency afferent inhibition and short-interval intracortical inhibition by test stimulus intensity and motor-evoked potential amplitude.
    Miyaguchi S; Kojima S; Sasaki R; Tamaki H; Onishi H
    Neuroreport; 2017 Dec; 28(18):1202-1207. PubMed ID: 29064955
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigating the effects of dopamine on short- and long-latency afferent inhibition.
    Foglia SD; Adams FC; Ramdeo KR; Drapeau CC; Turco CV; Tarnopolsky M; Ma J; Nelson AJ
    J Physiol; 2024 May; 602(10):2253-2264. PubMed ID: 38638084
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Short-latency afferent-induced facilitation and inhibition as predictors of thermally induced variations in corticomotor excitability.
    Ansari Y; Tremblay F
    Exp Brain Res; 2019 Jun; 237(6):1445-1455. PubMed ID: 30895341
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Short-latency afferent inhibition determined by the sensory afferent volley.
    Bailey AZ; Asmussen MJ; Nelson AJ
    J Neurophysiol; 2016 Aug; 116(2):637-44. PubMed ID: 27226451
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combined Peripheral Nerve Stimulation and Controllable Pulse Parameter Transcranial Magnetic Stimulation to Probe Sensorimotor Control and Learning.
    Graham KR; Hayes KD; Meehan SK
    J Vis Exp; 2023 Apr; (194):. PubMed ID: 37154553
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Normalization of sensorimotor integration by repetitive transcranial magnetic stimulation in cervical dystonia.
    Zittel S; Helmich RC; Demiralay C; Münchau A; Bäumer T
    J Neurol; 2015 Aug; 262(8):1883-9. PubMed ID: 26016685
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A meta-analysis of the effects of aging on motor cortex neurophysiology assessed by transcranial magnetic stimulation.
    Bhandari A; Radhu N; Farzan F; Mulsant BH; Rajji TK; Daskalakis ZJ; Blumberger DM
    Clin Neurophysiol; 2016 Aug; 127(8):2834-2845. PubMed ID: 27417060
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.