These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 34030051)

  • 21. Short latency afferent inhibition: comparison between threshold-tracking and conventional amplitude recording methods.
    Cengiz B; Boran HE; Alaydın HC; Tankisi H; Samusyte G; Howells J; Koltzenburg M; Bostock H
    Exp Brain Res; 2022 Apr; 240(4):1241-1247. PubMed ID: 35192042
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sensorimotor integration in cranial muscles tested by short- and long-latency afferent inhibition.
    Ginatempo F; Loi N; Rothwell JC; Deriu F
    Clin Neurophysiol; 2024 Jan; 157():15-24. PubMed ID: 38016262
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Conditioning intensity-dependent interaction between short-latency interhemispheric inhibition and short-latency afferent inhibition.
    Tsutsumi R; Shirota Y; Ohminami S; Terao Y; Ugawa Y; Hanajima R
    J Neurophysiol; 2012 Aug; 108(4):1130-7. PubMed ID: 22623481
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Decrease in short-latency afferent inhibition during corticomotor postexercise depression following repetitive finger movement.
    Miyaguchi S; Kojima S; Sasaki R; Kotan S; Kirimoto H; Tamaki H; Onishi H
    Brain Behav; 2017 Jul; 7(7):e00744. PubMed ID: 28729946
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A combined TMS-EEG study of short-latency afferent inhibition in the motor and dorsolateral prefrontal cortex.
    Noda Y; Cash RF; Zomorrodi R; Dominguez LG; Farzan F; Rajji TK; Barr MS; Chen R; Daskalakis ZJ; Blumberger DM
    J Neurophysiol; 2016 Sep; 116(3):938-48. PubMed ID: 27226450
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Relationship between the changes in M1 excitability after motor learning and arousal state as assessed by short-latency afferent inhibition.
    Koizume Y; Hirano M; Kubota S; Tanaka S; Funase K
    Behav Brain Res; 2017 Jul; 330():56-62. PubMed ID: 28522223
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Deficit of sensorimotor integration in normal aging.
    Degardin A; Devos D; Cassim F; Bourriez JL; Defebvre L; Derambure P; Devanne H
    Neurosci Lett; 2011 Jul; 498(3):208-12. PubMed ID: 21600958
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Human brain cortical correlates of short-latency afferent inhibition: a combined EEG-TMS study.
    Ferreri F; Ponzo D; Hukkanen T; Mervaala E; Könönen M; Pasqualetti P; Vecchio F; Rossini PM; Määttä S
    J Neurophysiol; 2012 Jul; 108(1):314-23. PubMed ID: 22457460
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Preserved central cholinergic functioning to transcranial magnetic stimulation in de novo patients with celiac disease.
    Lanza G; Fisicaro F; D'Agate CC; Ferri R; Cantone M; Falzone L; Pennisi G; Bella R; Hadjivassiliou M; Pennisi M
    PLoS One; 2021; 16(12):e0261373. PubMed ID: 34914787
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Tactile sensorimotor training does not alter short- and long-latency afferent inhibition.
    Adams FC; Pickersgill JW; Turco CV; Foglia SD; Toepp SL; Rehsi RR; Ramdeo KR; Salman M; Nelson AJ
    Neuroreport; 2023 Feb; 34(3):123-127. PubMed ID: 36719836
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dissociated effects of diazepam and lorazepam on short-latency afferent inhibition.
    Di Lazzaro V; Pilato F; Dileone M; Tonali PA; Ziemann U
    J Physiol; 2005 Nov; 569(Pt 1):315-23. PubMed ID: 16141274
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The effects of verbal and spatial working memory on short- and long-latency sensorimotor circuits in the motor cortex.
    Lenizky MW; Meehan SK
    PLoS One; 2024; 19(5):e0302989. PubMed ID: 38753604
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Somatosensory changes associated with motor skill learning.
    Mirdamadi JL; Block HJ
    J Neurophysiol; 2020 Mar; 123(3):1052-1062. PubMed ID: 31995429
    [TBL] [Abstract][Full Text] [Related]  

  • 34. High-frequency oscillations-based precise temporal resolution of short latency afferent inhibition in the human brain.
    Motolese F; Rossi M; Capone F; Cruciani A; Musumeci G; Manzo M; Pilato F; Di Pino G; Di Lazzaro V
    Clin Neurophysiol; 2022 Dec; 144():135-141. PubMed ID: 36210268
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sensory afferent inhibition within and between limbs in humans.
    Bikmullina R; Bäumer T; Zittel S; Münchau A
    Clin Neurophysiol; 2009 Mar; 120(3):610-8. PubMed ID: 19136299
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Reduced afferent-induced facilitation of primary motor cortex excitability in restless legs syndrome.
    Bocquillon P; Charley-Monaca C; Houdayer E; Marques A; Kwiatkowski A; Derambure P; Devanne H
    Sleep Med; 2017 Feb; 30():31-35. PubMed ID: 28215259
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Interactions between long latency afferent inhibition and interhemispheric inhibitions in the human motor cortex.
    Kukaswadia S; Wagle-Shukla A; Morgante F; Gunraj C; Chen R
    J Physiol; 2005 Mar; 563(Pt 3):915-24. PubMed ID: 15649986
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Verbal working memory modulates afferent circuits in motor cortex.
    Suzuki LY; Meehan SK
    Eur J Neurosci; 2018 Nov; 48(10):3117-3125. PubMed ID: 30218611
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The recent history of afferent stimulation modulates corticospinal excitability.
    Bonnesen MT; Fuglsang SA; Siebner HR; Christiansen L
    Neuroimage; 2022 Sep; 258():119365. PubMed ID: 35690256
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Impaired short- and long-latency afferent inhibition in amyotrophic lateral sclerosis.
    Cengiz B; Fidanci H; Kiyak Keçeli Y; Baltaci H; KuruoĞlu R
    Muscle Nerve; 2019 Jun; 59(6):699-704. PubMed ID: 30847934
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.