These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 34030141)
1. A deep and permeable nanofibrous oval-shaped microwell array for the stable formation of viable and functional spheroids. Kim D; Lee SJ; Youn J; Hong H; Eom S; Kim DS Biofabrication; 2021 Jun; 13(3):. PubMed ID: 34030141 [TBL] [Abstract][Full Text] [Related]
2. Functional spheroid organization of human salivary gland cells cultured on hydrogel-micropatterned nanofibrous microwells. Shin HS; Kook YM; Hong HJ; Kim YM; Koh WG; Lim JY Acta Biomater; 2016 Nov; 45():121-132. PubMed ID: 27592814 [TBL] [Abstract][Full Text] [Related]
3. Versatile Fabrication of Size- and Shape-Controllable Nanofibrous Concave Microwells for Cell Spheroid Formation. Park SM; Lee SJ; Lim J; Kim BC; Han SJ; Kim DS ACS Appl Mater Interfaces; 2018 Nov; 10(44):37878-37885. PubMed ID: 30360112 [TBL] [Abstract][Full Text] [Related]
4. Micropatterned culture of HepG2 spheroids using microwell chip with honeycomb-patterned polymer film. Yamazaki H; Gotou S; Ito K; Kohashi S; Goto Y; Yoshiura Y; Sakai Y; Yabu H; Shimomura M; Nakazawa K J Biosci Bioeng; 2014 Oct; 118(4):455-60. PubMed ID: 24742630 [TBL] [Abstract][Full Text] [Related]
5. Scalable Formation of Highly Viable and Functional Hepatocellular Carcinoma Spheroids in an Oxygen-Permeable Microwell Device for Anti-Tumor Drug Evaluation. He J; Zhou C; Xu X; Zhou Z; Danoy M; Shinohara M; Xiao W; Zhu D; Zhao X; Feng X; Mao Y; Sun W; Sakai Y; Yang H; Pang Y Adv Healthc Mater; 2022 Sep; 11(18):e2200863. PubMed ID: 35841538 [TBL] [Abstract][Full Text] [Related]
6. Enhanced oxygen permeability in membrane-bottomed concave microwells for the formation of pancreatic islet spheroids. Lee G; Jun Y; Jang H; Yoon J; Lee J; Hong M; Chung S; Kim DH; Lee S Acta Biomater; 2018 Jan; 65():185-196. PubMed ID: 29101017 [TBL] [Abstract][Full Text] [Related]
7. Design and fabrication of a liver-on-a-chip platform for convenient, highly efficient, and safe in situ perfusion culture of 3D hepatic spheroids. Ma LD; Wang YT; Wang JR; Wu JL; Meng XS; Hu P; Mu X; Liang QL; Luo GA Lab Chip; 2018 Aug; 18(17):2547-2562. PubMed ID: 30019731 [TBL] [Abstract][Full Text] [Related]
8. Fabrication of omega-shaped microwell arrays for a spheroid culture platform using pins of a commercial CPU to minimize cell loss and crosstalk. Kim K; Kim SH; Lee GH; Park JY Biofabrication; 2018 Aug; 10(4):045003. PubMed ID: 30074487 [TBL] [Abstract][Full Text] [Related]
9. Monte Carlo simulation-guided design for size-tuned tumor spheroid formation in 3D printed microwells. Eş I; Ionescu AT; Görmüş BM; Inci F; Marques MPC; Szita N; de la Torre LG Biotechnol Prog; 2024; 40(5):e3470. PubMed ID: 38613384 [TBL] [Abstract][Full Text] [Related]
10. Fabrication of PNIPAm-based thermoresponsive hydrogel microwell arrays for tumor spheroid formation. Dhamecha D; Le D; Chakravarty T; Perera K; Dutta A; Menon JU Mater Sci Eng C Mater Biol Appl; 2021 Jun; 125():112100. PubMed ID: 33965110 [TBL] [Abstract][Full Text] [Related]
11. A novel cylindrical microwell featuring inverted-pyramidal opening for efficient cell spheroid formation without cell loss. Cha JM; Park H; Shin EK; Sung JH; Kim O; Jung W; Bang OY; Kim J Biofabrication; 2017 Aug; 9(3):035006. PubMed ID: 28726681 [TBL] [Abstract][Full Text] [Related]
12. Detachably assembled microfluidic device for perfusion culture and post-culture analysis of a spheroid array. Sakai Y; Hattori K; Yanagawa F; Sugiura S; Kanamori T; Nakazawa K Biotechnol J; 2014 Jul; 9(7):971-9. PubMed ID: 24802801 [TBL] [Abstract][Full Text] [Related]
13. An oxygen-permeable spheroid culture system for the prevention of central hypoxia and necrosis of spheroids. Anada T; Fukuda J; Sai Y; Suzuki O Biomaterials; 2012 Nov; 33(33):8430-41. PubMed ID: 22940219 [TBL] [Abstract][Full Text] [Related]
14. Massive fabrication of functional hepatic cancer spheroids by micropatterned GelMA hydrogel chip for drug screening. Chen F; Wei X; Chen K; Wang L; Xu M Colloids Surf B Biointerfaces; 2024 Dec; 244():114171. PubMed ID: 39191112 [TBL] [Abstract][Full Text] [Related]
15. Spheroid Formation and Evaluation of Hepatic Cells in a Three-Dimensional Culture Device. Miyamoto Y; Ikeuchi M; Noguchi H; Yagi T; Hayashi S Cell Med; 2015 Dec; 8(1-2):47-56. PubMed ID: 26858908 [TBL] [Abstract][Full Text] [Related]
16. Microarray Platforms Based on 3D Printing. Qin J; Qian Z; Lai Y; Zhang C; Zhang X Anal Chem; 2024 Apr; 96(15):6001-6011. PubMed ID: 38566481 [TBL] [Abstract][Full Text] [Related]
17. Magnetic force-assisted self-locking metallic bead array for fabrication of diverse concave microwell geometries. Lee GH; Park YE; Cho M; Park H; Park JY Lab Chip; 2016 Sep; 16(18):3565-75. PubMed ID: 27509885 [TBL] [Abstract][Full Text] [Related]
18. Calcium Peroxide-Containing Polydimethylsiloxane-Based Microwells for Inhibiting Cell Death in Spheroids through Improved Oxygen Supply. Mizukami Y; Takahashi Y; Shimizu K; Konishi S; Takakura Y; Nishikawa M Biol Pharm Bull; 2021; 44(10):1458-1464. PubMed ID: 34602554 [TBL] [Abstract][Full Text] [Related]
19. SpheroidChip: Patterned Agarose Microwell Compartments Harboring HepG2 Spheroids are Compatible with Genotoxicity Testing. Chao C; Ngo Le P; Engelward BP ACS Biomater Sci Eng; 2020 Apr; 6(4):2427-2439. PubMed ID: 33145399 [TBL] [Abstract][Full Text] [Related]
20. Networked concave microwell arrays for constructing 3D cell spheroids. Lee GH; Lee JS; Lee GH; Joung WY; Kim SH; Lee SH; Park JY; Kim DH Biofabrication; 2017 Nov; 10(1):015001. PubMed ID: 29190216 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]