BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 34030226)

  • 21. Tailoring Fe
    Veksha A; Bin Mohamed Amrad MZ; Chen WQ; Binte Mohamed DK; Tiwari SB; Lim TT; Lisak G
    Chemosphere; 2022 Jun; 297():134148. PubMed ID: 35240158
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Conversion of pyrolytic non-condensable gases from polypropylene co-polymer into bamboo-type carbon nanotubes and high-quality oil using biochar as catalyst.
    Shah K; Patel S; Halder P; Kundu S; Marzbali MH; Hakeem IG; Pramanik BK; Chiang K; Patel T
    J Environ Manage; 2022 Jan; 301():113791. PubMed ID: 34592670
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Polyethylene terephthalate conversion into liquid fuel by its co-pyrolysis with low- and high-density polyethylene employing scrape aluminium as catalyst.
    Gulab H; Malik S
    Environ Technol; 2024 Jul; 45(18):3721-3735. PubMed ID: 37326613
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Co-Pyrolysis of Cotton Stalks and Low-Density Polyethylene to Synthesize Biochar and Its Application in Pb(II) Removal.
    Yuan X; Zhang X; Lv H; Xu Y; Bai T
    Molecules; 2022 Jul; 27(15):. PubMed ID: 35956817
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Pyrolysis and gasification of landfilled plastic wastes with Ni-Mg-La/Al2O3 catalyst.
    Kaewpengkrow P; Atong D; Sricharoenchaikul V
    Environ Technol; 2012 Dec; 33(22-24):2489-95. PubMed ID: 23437645
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Thermal and catalytic pyrolysis of a mixture of plastics from small waste electrical and electronic equipment (WEEE).
    Santella C; Cafiero L; De Angelis D; La Marca F; Tuffi R; Vecchio Ciprioti S
    Waste Manag; 2016 Aug; 54():143-52. PubMed ID: 27184448
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effective deoxygenation for the production of liquid biofuels via microwave assisted co-pyrolysis of agro residues and waste plastics combined with catalytic upgradation.
    Suriapparao DV; Vinu R; Shukla A; Haldar S
    Bioresour Technol; 2020 Apr; 302():122775. PubMed ID: 31986334
    [TBL] [Abstract][Full Text] [Related]  

  • 28. High quality liquid fuel production from waste plastics via two-step cracking route in a bottom-up approach using bi-functional Fe/HZSM-5 catalyst.
    Dwivedi U; Naik SN; Pant KK
    Waste Manag; 2021 Aug; 132():151-161. PubMed ID: 34333250
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Plastics to fuel or plastics: Life cycle assessment-based evaluation of different options for pyrolysis at end-of-life.
    Das S; Liang C; Dunn JB
    Waste Manag; 2022 Nov; 153():81-88. PubMed ID: 36055178
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Thermal degradation of waste plastics under non-sweeping atmosphere: Part 1: Effect of temperature, product optimization, and degradation mechanism.
    Singh RK; Ruj B; Sadhukhan AK; Gupta P
    J Environ Manage; 2019 Jun; 239():395-406. PubMed ID: 30928634
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Catalytic Pyrolysis of Polyethylene for the Selective Production of Monocyclic Aromatics over the Zinc-Loaded ZSM-5 Catalyst.
    Wang Y; Cheng L; Gu J; Zhang Y; Wu J; Yuan H; Chen Y
    ACS Omega; 2022 Jan; 7(3):2752-2765. PubMed ID: 35097272
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Two-step gasification of cattle manure for hydrogen-rich gas production: Effect of biochar preparation temperature and gasification temperature.
    Xin Y; Cao H; Yuan Q; Wang D
    Waste Manag; 2017 Oct; 68():618-625. PubMed ID: 28623020
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Impacts of different biochar types on hydrogen production promotion during fermentative co-digestion of food wastes and dewatered sewage sludge.
    Wang G; Li Q; Dzakpasu M; Gao X; Yuwen C; Wang XC
    Waste Manag; 2018 Oct; 80():73-80. PubMed ID: 30455029
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Exploring Synergistic Interactions between Polystyrene and Polyethylene.
    Luong T; Wang Y; Parmar K; Jiang C; Wang Q; Hu J
    Chempluschem; 2023 Jun; 88(6):e202300210. PubMed ID: 37302980
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The Chemistry and Kinetics of Polyethylene Pyrolysis: A Process to Produce Fuels and Chemicals.
    Zhao D; Wang X; Miller JB; Huber GW
    ChemSusChem; 2020 Apr; 13(7):1764-1774. PubMed ID: 31917892
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Influence of silica-alumina support ratio on H
    Zhang Y; Tao Y; Huang J; Williams P
    Waste Manag Res; 2017 Oct; 35(10):1045-1054. PubMed ID: 28789599
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Energy recovery and waste treatment using the co-pyrolysis of biomass waste and polymer.
    Oh SY; Sohn JI
    Waste Manag Res; 2022 Nov; 40(11):1637-1644. PubMed ID: 35642625
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Catalytic Copyrolysis of Used Waste Plastic and Lubricating Oil Using Cu-Modification of a Spent Fluid Catalytic Cracking Catalyst for Diesel-like Fuel Production.
    Charusiri W; Phowan N; Permpoonwiwat A; Vitidsant T
    ACS Omega; 2023 Oct; 8(43):40785-40800. PubMed ID: 37929157
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Thermal degradation of waste plastics under non-sweeping atmosphere: Part 2: Effect of process temperature on product characteristics and their future applications.
    Singh RK; Ruj B; Sadhukhan AK; Gupta P
    J Environ Manage; 2020 May; 261():110112. PubMed ID: 32001431
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The synergistic mechanism between coke depositions and gas for H
    Xu D; Xiong Y; Zhang S; Su Y
    Waste Manag; 2021 Feb; 121():23-32. PubMed ID: 33341691
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.