These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 34030254)
1. Human and climate drivers of global biomass burning variability. Chuvieco E; Pettinari ML; Koutsias N; Forkel M; Hantson S; Turco M Sci Total Environ; 2021 Jul; 779():146361. PubMed ID: 34030254 [TBL] [Abstract][Full Text] [Related]
2. High-resolution inventory of mercury emissions from biomass burning in tropical continents during 2001-2017. Shi Y; Zhao A; Matsunaga T; Yamaguchi Y; Zang S; Li Z; Yu T; Gu X Sci Total Environ; 2019 Feb; 653():638-648. PubMed ID: 30759589 [TBL] [Abstract][Full Text] [Related]
3. The dynamics and drivers of fuel and fire in the Portuguese public forest. Fernandes PM; Loureiro C; Guiomar N; Pezzatti GB; Manso FT; Lopes L J Environ Manage; 2014 Dec; 146():373-382. PubMed ID: 25203440 [TBL] [Abstract][Full Text] [Related]
4. Climate and socioeconomic drivers of biomass burning and carbon emissions from fires in tropical dry forests: A Pantropical analysis. Corona-Núñez RO; Campo JE Glob Chang Biol; 2023 Feb; 29(4):1062-1079. PubMed ID: 36345650 [TBL] [Abstract][Full Text] [Related]
5. Seasonal, interannual, and long-term variabilities in biomass burning activity over South Asia. Bhardwaj P; Naja M; Kumar R; Chandola HC Environ Sci Pollut Res Int; 2016 Mar; 23(5):4397-410. PubMed ID: 26503008 [TBL] [Abstract][Full Text] [Related]
6. [Estimating Biomass Burned Areas from Multispectral Dataset Detected by Multiple-Satellite]. Yu C; Chen LF; Li SS; Tao JH; Su L Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Mar; 35(3):739-45. PubMed ID: 26117890 [TBL] [Abstract][Full Text] [Related]
7. Comparison of global inventories of CO2 emissions from biomass burning during 2002-2011 derived from multiple satellite products. Shi Y; Matsunaga T; Saito M; Yamaguchi Y; Chen X Environ Pollut; 2015 Nov; 206():479-87. PubMed ID: 26281761 [TBL] [Abstract][Full Text] [Related]
8. Global patterns of interannual climate-fire relationships. Abatzoglou JT; Williams AP; Boschetti L; Zubkova M; Kolden CA Glob Chang Biol; 2018 Nov; 24(11):5164-5175. PubMed ID: 30047195 [TBL] [Abstract][Full Text] [Related]
9. Regional paleofire regimes affected by non-uniform climate, vegetation and human drivers. Blarquez O; Ali AA; Girardin MP; Grondin P; Fréchette B; Bergeron Y; Hély C Sci Rep; 2015 Sep; 5():13356. PubMed ID: 26330162 [TBL] [Abstract][Full Text] [Related]
10. The climate, the fuel and the land use: Long-term regional variability of biomass burning in boreal forests. Molinari C; Lehsten V; Blarquez O; Carcaillet C; Davis BAS; Kaplan JO; Clear J; Bradshaw RHW Glob Chang Biol; 2018 Oct; 24(10):4929-4945. PubMed ID: 29959810 [TBL] [Abstract][Full Text] [Related]
11. Influence of atmospheric teleconnections on interannual variability of Arctic-boreal fires. Zhao Z; Lin Z; Li F; Rogers BM Sci Total Environ; 2022 Sep; 838(Pt 4):156550. PubMed ID: 35688252 [TBL] [Abstract][Full Text] [Related]
12. African burned area and fire carbon emissions are strongly impacted by small fires undetected by coarse resolution satellite data. Ramo R; Roteta E; Bistinas I; van Wees D; Bastarrika A; Chuvieco E; van der Werf GR Proc Natl Acad Sci U S A; 2021 Mar; 118(9):. PubMed ID: 33619088 [TBL] [Abstract][Full Text] [Related]
13. Initial estimates of mercury emissions to the atmosphere from global biomass burning. Friedli HR; Arellano AF; Cinnirella S; Pirrone N Environ Sci Technol; 2009 May; 43(10):3507-13. PubMed ID: 19544847 [TBL] [Abstract][Full Text] [Related]
14. Relationships between human population density and burned area at continental and global scales. Bistinas I; Oom D; Sá AC; Harrison SP; Prentice IC; Pereira JM PLoS One; 2013; 8(12):e81188. PubMed ID: 24358108 [TBL] [Abstract][Full Text] [Related]
15. Arctic and boreal paleofire records reveal drivers of fire activity and departures from Holocene variability. Hoecker TJ; Higuera PE; Kelly R; Hu FS Ecology; 2020 Sep; 101(9):e03096. PubMed ID: 32386341 [TBL] [Abstract][Full Text] [Related]
16. Contrasting long-term records of biomass burning in wet and dry savannas of equatorial East Africa. Colombaroli D; Ssemmanda I; Gelorini V; Verschuren D Glob Chang Biol; 2014 Sep; 20(9):2903-14. PubMed ID: 24677504 [TBL] [Abstract][Full Text] [Related]
18. Building a small fire database for Sub-Saharan Africa from Sentinel-2 high-resolution images. Chuvieco E; Roteta E; Sali M; Stroppiana D; Boettcher M; Kirches G; Storm T; Khairoun A; Pettinari ML; Franquesa M; Albergel C Sci Total Environ; 2022 Nov; 845():157139. PubMed ID: 35817109 [TBL] [Abstract][Full Text] [Related]
19. Climate and wildfire area burned in western U.S. ecoprovinces, 1916-2003. Littell JS; McKenzie D; Peterson DL; Westerling AL Ecol Appl; 2009 Jun; 19(4):1003-21. PubMed ID: 19544740 [TBL] [Abstract][Full Text] [Related]
20. [Drivers of human-caused fire occurrence and its variation trend under climate change in the Great Xing'an Mountains, Northeast China]. Li S; Wu ZW; Liang Y; He HS Ying Yong Sheng Tai Xue Bao; 2017 Jan; 28(1):210-218. PubMed ID: 29749205 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]