These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
209 related articles for article (PubMed ID: 34030299)
1. Salix psammophila afforestations can cause a decline of the water table, prevent groundwater recharge and reduce effective infiltration. Zhang Z; Wang W; Gong C; Zhao M; Franssen HH; Brunner P Sci Total Environ; 2021 Aug; 780():146336. PubMed ID: 34030299 [TBL] [Abstract][Full Text] [Related]
2. [Soil moisture dynamics and water balance of Salix psammophila shrubs in south edge of Mu Us Sandy Land]. An H; An Y Ying Yong Sheng Tai Xue Bao; 2011 Sep; 22(9):2247-52. PubMed ID: 22126031 [TBL] [Abstract][Full Text] [Related]
3. Fine root dynamic characteristics and effect on plantation's carbon sequestration of three He L; Jia Z; Li Q; Zhang Y; Wu R; Dai J; Gao Y Ecol Evol; 2021 Mar; 11(6):2645-2659. PubMed ID: 33767826 [TBL] [Abstract][Full Text] [Related]
4. Seasonal Dynamics of Water Use Strategy of Two Salix Shrubs in Alpine Sandy Land, Tibetan Plateau. Zhu Y; Wang G; Li R PLoS One; 2016; 11(5):e0156586. PubMed ID: 27243772 [TBL] [Abstract][Full Text] [Related]
5. An assessment of different methods to determine specific yield for estimating groundwater recharge using lysimeters. Gong C; Zhang Z; Wang W; Duan L; Wang Z Sci Total Environ; 2021 Sep; 788():147799. PubMed ID: 34134390 [TBL] [Abstract][Full Text] [Related]
6. [Water use characteristics and the mechanism of water uptake in two typical sand-fixing species in Mu Us sandy land]. Liu XH; Zhou ZY; He Y; Ma YD; Li BX; Zheng C Ying Yong Sheng Tai Xue Bao; 2024 Apr; 35(4):897-908. PubMed ID: 38884224 [TBL] [Abstract][Full Text] [Related]
7. Soil Water Movement and Groundwater Recharge Under Different Land Uses in a Flood-Irrigated Area. Yang L; Song X; Ma Y; Gong L; Zhao Z Ground Water; 2024; 62(2):212-225. PubMed ID: 37254684 [TBL] [Abstract][Full Text] [Related]
8. On Change of Soil Moisture Distribution With Vegetation Reconstruction in Mu Us Sandy Land of China, With Newly Designed Lysimeter. Cheng Y; Yang W; Zhan H; Jiang Q; Shi M; Wang Y; Li X; Xin Z Front Plant Sci; 2021; 12():609529. PubMed ID: 33679828 [TBL] [Abstract][Full Text] [Related]
9. [Deuterium isotope characteristics of precipitation infiltrated in the West Ordos Desert of Inner Mongolia, China]. Chen J; Xu Q; Gao Q; Ma YB; Zhang BB; Hao YG Ying Yong Sheng Tai Xue Bao; 2017 Jul; 28(7):2207-2214. PubMed ID: 29741051 [TBL] [Abstract][Full Text] [Related]
10. Water utilization characteristics of dominant plant species from different functional groups of desert steppe. Chen XY; Chen L; Yang XG; Li ML; Yu D; Song NP; Chen YL Ying Yong Sheng Tai Xue Bao; 2024 Aug; 35(8):2119-2130. PubMed ID: 39419797 [TBL] [Abstract][Full Text] [Related]
11. Partitioning of Water Between Differently Sized Shrubs and Potential Groundwater Recharge in a Semiarid Savanna in Namibia. Geißler K; Heblack J; Uugulu S; Wanke H; Blaum N Front Plant Sci; 2019; 10():1411. PubMed ID: 31798602 [No Abstract] [Full Text] [Related]
12. Evaluating potential groundwater recharge in the unsteady state for deep-rooted afforestation in deep loess deposits. Chen G; Meng T; Wu W; Si B; Li M; Liu B; Wu S; Feng H; Siddique KHM Sci Total Environ; 2023 Feb; 858(Pt 2):159837. PubMed ID: 36411672 [TBL] [Abstract][Full Text] [Related]
13. Sap flow of Salix psammophila and its principal influencing factors at different slope positions in the Mu Us desert. Pei Z; Hao S; Pang G; Wang K; Liu T PLoS One; 2019; 14(12):e0225653. PubMed ID: 31805066 [TBL] [Abstract][Full Text] [Related]
14. Numerical simulation to assess potential groundwater recharge and net groundwater use in a semi-arid region. Dash CJ; Sarangi A; Singh DK; Adhikary PP Environ Monit Assess; 2019 May; 191(6):371. PubMed ID: 31102073 [TBL] [Abstract][Full Text] [Related]
15. Groundwater recharge at five representative sites in the Hebei Plain, China. Lu X; Jin M; van Genuchten MT; Wang B Ground Water; 2011; 49(2):286-94. PubMed ID: 20100294 [TBL] [Abstract][Full Text] [Related]
16. Water subsidies from mountains to deserts: their role in sustaining groundwater-fed oases in a sandy landscape. Jobbágy EG; Nosetto MD; Villagra PE; Jackson RB Ecol Appl; 2011 Apr; 21(3):678-94. PubMed ID: 21639036 [TBL] [Abstract][Full Text] [Related]
17. Spatial patterns of soil moisture as affected by shrubs, in different climatic conditions. Pariente S Environ Monit Assess; 2002 Feb; 73(3):237-51. PubMed ID: 11878633 [TBL] [Abstract][Full Text] [Related]
19. [Root anatomical structure and hydraulic traits of three typical shrubs on the sandy lands of northern Shaanxi Province, China]. Ai SS; Li YY; Chen JC; Chen WY Ying Yong Sheng Tai Xue Bao; 2015 Nov; 26(11):3277-84. PubMed ID: 26915180 [TBL] [Abstract][Full Text] [Related]
20. Potential groundwater recharge from deep drainage of irrigation water. Altafi Dadgar M; Nakhaei M; Porhemmat J; Eliasi B; Biswas A Sci Total Environ; 2020 May; 716():137105. PubMed ID: 32044499 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]