BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 34030325)

  • 1. Hydrogen production in single-chamber microbial electrolysis cell under high applied voltages.
    Cui W; Lu Y; Zeng C; Yao J; Liu G; Luo H; Zhang R
    Sci Total Environ; 2021 Aug; 780():146597. PubMed ID: 34030325
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved hydrogen production in the microbial electrolysis cell by inhibiting methanogenesis using ultraviolet irradiation.
    Hou Y; Luo H; Liu G; Zhang R; Li J; Fu S
    Environ Sci Technol; 2014 Sep; 48(17):10482-8. PubMed ID: 25111871
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrogen production in a single chamber microbial electrolysis cell lacking a membrane.
    Call D; Logan BE
    Environ Sci Technol; 2008 May; 42(9):3401-6. PubMed ID: 18522125
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electricity-assisted biological hydrogen production from acetate by Geobacter sulfurreducens.
    Geelhoed JS; Stams AJ
    Environ Sci Technol; 2011 Jan; 45(2):815-20. PubMed ID: 21158443
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vapor-Fed Cathode Microbial Electrolysis Cells with Closely Spaced Electrodes Enables Greatly Improved Performance.
    Rossi R; Baek G; Logan BE
    Environ Sci Technol; 2022 Jan; 56(2):1211-1220. PubMed ID: 34971515
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient hydrogen production in single-chamber microbial electrolysis cell with a fermentable substrate under hyperalkaline conditions.
    Cui W; Luo H; Liu G
    Waste Manag; 2023 Aug; 171():173-183. PubMed ID: 37660630
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Onset Investigation on Dynamic Change of Biohythane Generation and Microbial Structure in Dual-chamber versus Single-chamber Microbial Electrolysis Cells.
    Luo S; Liu F; Fu B; He K; Yang H; Zhang X; Liang P; Huang X
    Water Res; 2021 Aug; 201():117326. PubMed ID: 34147740
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improved performance of the microbial electrolysis desalination and chemical-production cell with enlarged anode and high applied voltages.
    Ye B; Luo H; Lu Y; Liu G; Zhang R; Li X
    Bioresour Technol; 2017 Nov; 244(Pt 1):913-919. PubMed ID: 28847080
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved hydrogen production in the single-chamber microbial electrolysis cell with inhibition of methanogenesis under alkaline conditions.
    Cui W; Liu G; Zeng C; Lu Y; Luo H; Zhang R
    RSC Adv; 2019 Sep; 9(52):30207-30215. PubMed ID: 35530221
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of methanogens within cathodic biofilm in the single-chamber microbial electrolysis cell.
    Li X; Zeng C; Lu Y; Liu G; Luo H; Zhang R
    Bioresour Technol; 2019 Feb; 274():403-409. PubMed ID: 30551043
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Influence of substrate COD on methane production in single-chambered microbial electrolysis cell].
    Teng WK; Liu GL; Luo HP; Zhang RD; Fu SY
    Huan Jing Ke Xue; 2015 Mar; 36(3):1021-6. PubMed ID: 25929072
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrophilic porous materials provide efficient gas-liquid separation to advance hydrogen production in microbial electrolysis cells.
    Zhao N; Liang D; Li X; Meng S; Liu H
    Bioresour Technol; 2021 Oct; 337():125352. PubMed ID: 34098503
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High yield hydrogen production in a single-chamber membrane-less microbial electrolysis cell.
    Ye Y; Wang L; Chen Y; Zhu S; Shen S
    Water Sci Technol; 2010; 61(3):721-7. PubMed ID: 20150709
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High hydrogen production rate of microbial electrolysis cell (MEC) with reduced electrode spacing.
    Cheng S; Logan BE
    Bioresour Technol; 2011 Feb; 102(3):3571-4. PubMed ID: 21036036
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of ammonia on electrochemical active biofilm in microbial electrolysis cells for synthetic swine wastewater treatment.
    Wang N; Feng Y; Li Y; Zhang L; Liu J; Li N; He W
    Water Res; 2022 Jul; 219():118570. PubMed ID: 35597221
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancement of hydrogen production in a single chamber microbial electrolysis cell through anode arrangement optimization.
    Liang DW; Peng SK; Lu SF; Liu YY; Lan F; Xiang Y
    Bioresour Technol; 2011 Dec; 102(23):10881-5. PubMed ID: 21974881
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrogen production with effluent from an ethanol-H2-coproducing fermentation reactor using a single-chamber microbial electrolysis cell.
    Lu L; Ren N; Xing D; Logan BE
    Biosens Bioelectron; 2009 Jun; 24(10):3055-60. PubMed ID: 19375299
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancing hydrogen production through anode fed-batch mode and controlled cell voltage in a microbial electrolysis cell fully catalysed by microorganisms.
    Lim SS; Fontmorin JM; Ikhmal Salehmin MN; Feng Y; Scott K; Yu EH
    Chemosphere; 2022 Feb; 288(Pt 2):132548. PubMed ID: 34653487
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of exoelectrogenic bioanode and study on feasibility of hydrogen production using abiotic VITO-CoRE™ and VITO-CASE™ electrodes in a single chamber microbial electrolysis cell (MEC) at low current densities.
    Pasupuleti SB; Srikanth S; Venkata Mohan S; Pant D
    Bioresour Technol; 2015 Nov; 195():131-8. PubMed ID: 26187582
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An MEC-MFC-coupled system for biohydrogen production from acetate.
    Sun M; Sheng GP; Zhang L; Xia CR; Mu ZX; Liu XW; Wang HL; Yu HQ; Qi R; Yu T; Yang M
    Environ Sci Technol; 2008 Nov; 42(21):8095-100. PubMed ID: 19031908
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.