These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 34030365)

  • 21. Pulmonary and pleural toxicity of potassium octatitanate fibers, rutile titanium dioxide nanoparticles, and MWCNT-7 in male Fischer 344 rats.
    Abdelgied M; El-Gazzar AM; Alexander DB; Alexander WT; Numano T; Iigou M; Naiki-Ito A; Takase H; Abdou KA; Hirose A; Taquahashi Y; Kanno J; Abdelhamid M; Tsuda H; Takahashi S
    Arch Toxicol; 2019 Apr; 93(4):909-920. PubMed ID: 30759267
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Influence of extracellular polymeric substances on the heteroaggregation between CeO
    Zhao J; Tang J; Dang T
    Sci Total Environ; 2022 Feb; 806(Pt 2):150358. PubMed ID: 34600214
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fouling potentials and properties of foulants in an innovative algal-sludge membrane bioreactor.
    Sun L; Tian Y; Li H; Wang Q
    Environ Int; 2021 Jun; 151():106439. PubMed ID: 33626455
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Quantity and quality of natural organic matter influence the ecotoxicity of titanium dioxide nanoparticles.
    Seitz F; Rosenfeldt RR; Müller M; Lüderwald S; Schulz R; Bundschuh M
    Nanotoxicology; 2016 Dec; 10(10):1415-1421. PubMed ID: 27499241
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Accelerated productions and physicochemical characterizations of different extracellular polymeric substances from Chlorella vulgaris with nano-ZnO.
    Zhao J; Liu S; Liu N; Zhang H; Zhou Q; Ge F
    Sci Total Environ; 2019 Mar; 658():582-589. PubMed ID: 30580213
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Extracellular polymeric substrates of Chlorella vulgaris F1068 weaken stress of cetyltrimethyl ammonium chloride on ammonium uptake.
    Li F; Kuang Y; Liu N; Ge F
    Sci Total Environ; 2019 Apr; 661():678-684. PubMed ID: 30684836
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Physiological and transcriptomic analysis reveals the toxic and protective mechanisms of marine microalga Chlorella pyrenoidosa in response to TiO
    Zhu L; Feng S; Li Y; Sun X; Sui Q; Chen B; Qu K; Xia B
    Sci Total Environ; 2024 Feb; 912():169174. PubMed ID: 38072255
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Influence of extracellular polymeric substances on cell-NPs heteroaggregation process and toxicity of cerium dioxide NPs to Microcystis aeruginosa.
    Yang Y; Hou J; Wang P; Wang C; Wang X; You G
    Environ Pollut; 2018 Nov; 242(Pt B):1206-1216. PubMed ID: 30118909
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evaluation of coexposure to inorganic arsenic and titanium dioxide nanoparticles in the marine shrimp Litopenaeus vannamei.
    Cordeiro L; Müller L; Gelesky MA; Wasielesky W; Fattorini D; Regoli F; Monserrat JM; Ventura-Lima J
    Environ Sci Pollut Res Int; 2016 Jan; 23(2):1214-23. PubMed ID: 26354110
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Extracellular polymeric substances altered the physicochemical properties of molybdenum disulfide nanomaterials to mitigate its toxicity to Chlorella vulgaris.
    Cao M; Yang D; Wang F; Zhou B; Chen H; Yuan R; Sun K
    NanoImpact; 2023 Oct; 32():100485. PubMed ID: 37778438
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of ultraviolet radiation (type B) and titanium dioxide nanoparticles on the interspecific interaction between Microcystis flos-aquae and Pseudokirchneriella subcapitata.
    Otogo RA; Chia MA; Uyovbisere EE; Iortsuun DN; Bittencourt-Oliveira MDC
    Sci Total Environ; 2021 Jul; 779():146561. PubMed ID: 34030274
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Regulation and role of extracellular polymeric substances in the defensive responses of Dictyosphaerium sp. to enrofloxacin stress.
    Cheng Q; Liu Y; Xu L; Ye J; Wang Q; Lin H; Ma J
    Sci Total Environ; 2023 Oct; 896():165302. PubMed ID: 37414177
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of titanium dioxide nanoparticles on the bioavailability and neurotoxicity of cypermethrin in zebrafish larvae.
    Li M; Wu Q; Wang Q; Xiang D; Zhu G
    Aquat Toxicol; 2018 Jun; 199():212-219. PubMed ID: 29656190
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Impact of montmorillonite clay on the homo- and heteroaggregation of titanium dioxide nanoparticles (nTiO
    Wang J; Zhao X; Wu F; Tang Z; Zhao T; Niu L; Fang M; Wang H; Wang F
    Sci Total Environ; 2021 Aug; 784():147019. PubMed ID: 34088034
    [TBL] [Abstract][Full Text] [Related]  

  • 35. TiO2 nanoparticles in the marine environment: Physical effects responsible for the toxicity on algae Phaeodactylum tricornutum.
    Wang Y; Zhu X; Lao Y; Lv X; Tao Y; Huang B; Wang J; Zhou J; Cai Z
    Sci Total Environ; 2016 Sep; 565():818-826. PubMed ID: 27060054
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Aggregation and transport of rutile titanium dioxide nanoparticles with montmorillonite and diatomite in the presence of phosphate in porous sand.
    Guo P; Xu N; Li D; Huangfu X; Li Z
    Chemosphere; 2018 Aug; 204():327-334. PubMed ID: 29674144
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Diminishing bioavailability and toxicity of P25 TiO
    Thiagarajan V; M P; S A; R S; N C; G K S; Mukherjee A
    Chemosphere; 2019 Oct; 233():363-372. PubMed ID: 31176899
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Different crystalline forms of titanium dioxide nanomaterial (rutile and anatase) can influence the toxicity of copper in golden mussel Limnoperna fortunei?
    Manske Nunes S; Josende ME; González-Durruthy M; Pires Ruas C; Gelesky MA; Romano LA; Fattorini D; Regoli F; Monserrat JM; Ventura-Lima J
    Aquat Toxicol; 2018 Dec; 205():182-192. PubMed ID: 30391727
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Soil-aged nano titanium dioxide effects on full-grown carrot: Dose and surface-coating dependent improvements on growth and nutrient quality.
    Wang Y; Deng C; Cota-Ruiz K; Peralta-Videa JR; Hernandez-Viezcas JA; Gardea-Torresdey JL
    Sci Total Environ; 2021 Jun; 774():145699. PubMed ID: 33609834
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Trophic transfer potential of two different crystalline phases of TiO
    Iswarya V; Bhuvaneshwari M; Chandrasekaran N; Mukherjee A
    Aquat Toxicol; 2018 Apr; 197():89-97. PubMed ID: 29448127
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.