These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 34030383)
1. Oxidation and incorporation of adsorbed antimonite during iron(II)-catalyzed recrystallization of ferrihydrite. Yin X; Zhang G; Su R; Zeng X; Yan Z; Zhang D; Ma X; Lei L; Lin J; Wang S; Jia Y Sci Total Environ; 2021 Jul; 778():146424. PubMed ID: 34030383 [TBL] [Abstract][Full Text] [Related]
2. Stabilization and transformation of selenium during the Fe(II)-induced transformation of Se(IV)-adsorbed ferrihydrite under anaerobic conditions. Wang S; Lei L; Zhang D; Zhang G; Cao R; Wang X; Lin J; Jia Y J Hazard Mater; 2020 Feb; 384():121365. PubMed ID: 31593863 [TBL] [Abstract][Full Text] [Related]
3. Antimony speciation and mobility during Fe(II)-induced transformation of humic acid-antimony(V)-iron(III) coprecipitates. Karimian N; Burton ED; Johnston SG Environ Pollut; 2019 Nov; 254(Pt B):113112. PubMed ID: 31479811 [TBL] [Abstract][Full Text] [Related]
4. Impact of Antimony(V) on Iron(II)-Catalyzed Ferrihydrite Transformation Pathways: A Novel Mineral Switch for Feroxyhyte Formation. Hockmann K; Karimian N; Schlagenhauff S; Planer-Friedrich B; Burton ED Environ Sci Technol; 2021 Apr; 55(8):4954-4963. PubMed ID: 33710876 [TBL] [Abstract][Full Text] [Related]
5. Investigating the effect of ascorbate on the Fe(II)-catalyzed transformation of the poorly crystalline iron mineral ferrihydrite. Xiao W; Jones AM; Collins RN; Waite TD Biochim Biophys Acta Gen Subj; 2018 Aug; 1862(8):1760-1769. PubMed ID: 29751097 [TBL] [Abstract][Full Text] [Related]
6. Humic acid impacts antimony partitioning and speciation during iron(II)-induced ferrihydrite transformation. Karimian N; Burton ED; Johnston SG; Hockmann K; Choppala G Sci Total Environ; 2019 Sep; 683():399-410. PubMed ID: 31141743 [TBL] [Abstract][Full Text] [Related]
7. Iron(II)-activated phase transformation of Cd-bearing ferrihydrite: Implications for cadmium mobility and fate under anaerobic conditions. Zhao X; Yuan Z; Wang S; Pan Y; Chen N; Tunc A; Cheung K; Alparov A; Chen W; Deevsalar R; Lin J; Jia Y Sci Total Environ; 2022 Nov; 848():157719. PubMed ID: 35914597 [TBL] [Abstract][Full Text] [Related]
8. Antimony(V) incorporation into synthetic ferrihydrite, goethite, and natural iron oxyhydroxides. Mitsunobu S; Takahashi Y; Terada Y; Sakata M Environ Sci Technol; 2010 May; 44(10):3712-8. PubMed ID: 20426473 [TBL] [Abstract][Full Text] [Related]
9. Microbial Reduction of Antimony(V)-Bearing Ferrihydrite by Geobacter sulfurreducens. Xie J; Coker VS; O'Driscoll B; Cai R; Haigh SJ; Lloyd JR Appl Environ Microbiol; 2023 Mar; 89(3):e0217522. PubMed ID: 36853045 [TBL] [Abstract][Full Text] [Related]
10. Novel Insights into Sb(III) Oxidation and Immobilization during Ferrous Iron Oxygenation: The Overlooked Roles of Singlet Oxygen and Fe (oxyhydr)oxides Formation. Wang Y; He M; Lin C; Ouyang W; Liu X Environ Sci Technol; 2024 Jul; 58(26):11470-11481. PubMed ID: 38864425 [TBL] [Abstract][Full Text] [Related]
11. Behavior of antimony(V) during the transformation of ferrihydrite and its environmental implications. Mitsunobu S; Muramatsu C; Watanabe K; Sakata M Environ Sci Technol; 2013 Sep; 47(17):9660-7. PubMed ID: 23909642 [TBL] [Abstract][Full Text] [Related]
12. Stabilization of Ferrihydrite and Lepidocrocite by Silicate during Fe(II)-Catalyzed Mineral Transformation: Impact on Particle Morphology and Silicate Distribution. Schulz K; ThomasArrigo LK; Kaegi R; Kretzschmar R Environ Sci Technol; 2022 May; 56(9):5929-5938. PubMed ID: 35435661 [TBL] [Abstract][Full Text] [Related]
13. Anaerobic Bacterial Immobilization and Removal of Toxic Sb(III) Coupled With Fe(II)/Sb(III) Oxidation and Denitrification. Li J; Zhang Y; Zheng S; Liu F; Wang G Front Microbiol; 2019; 10():360. PubMed ID: 30873144 [TBL] [Abstract][Full Text] [Related]
14. Antimony(V) Incorporation into Schwertmannite: Critical Insights on Antimony Retention in Acidic Environments. Rastegari M; Karimian N; Johnston SG; Doherty SJ; Hamilton JL; Choppala G; Hosseinpour Moghaddam M; Burton ED Environ Sci Technol; 2022 Dec; 56(24):17776-17784. PubMed ID: 36445713 [TBL] [Abstract][Full Text] [Related]
15. Antimony(V) behavior during the Fe(II)-induced transformation of Sb(V)-bearing natural multicomponent secondary iron mineral under acidic conditions. Lin W; Peng L; Li H; Xiao T; Wang J; Wang N; Zhang X; Zhang H Sci Total Environ; 2024 Feb; 912():169592. PubMed ID: 38154637 [TBL] [Abstract][Full Text] [Related]
16. Organic Matter Counteracts the Enhancement of Cr(III) Extractability during the Fe(II)-Catalyzed Ferrihydrite Transformation: A Nanoscale- and Molecular-Level Investigation. Xia X; Liu J; Jin L; Wang J; Darma AI; He C; Shakouri M; Hu Y; Yang J Environ Sci Technol; 2023 Sep; 57(36):13496-13505. PubMed ID: 37638663 [TBL] [Abstract][Full Text] [Related]
17. Reduction of Sb(V) by coupled biotic-abiotic processes under sulfidogenic conditions. Johnson CR; Antonopoulos DA; Boyanov MI; Flynn TM; Koval JC; Kemner KM; O'Loughlin EJ Heliyon; 2021 Feb; 7(2):e06275. PubMed ID: 33681496 [TBL] [Abstract][Full Text] [Related]
18. Incorporation of Shewanella oneidensis MR-1 and goethite stimulates anaerobic Sb(III) oxidation by the generation of labile Fe(III) intermediate. Sheng H; Liu W; Wang Y; Ye L; Jing C Environ Pollut; 2024 Jun; 351():124008. PubMed ID: 38641038 [TBL] [Abstract][Full Text] [Related]
19. Impact of Organic Matter on Iron(II)-Catalyzed Mineral Transformations in Ferrihydrite-Organic Matter Coprecipitates. ThomasArrigo LK; Byrne JM; Kappler A; Kretzschmar R Environ Sci Technol; 2018 Nov; 52(21):12316-12326. PubMed ID: 30991468 [TBL] [Abstract][Full Text] [Related]
20. Reductive transformation of birnessite and the mobility of co-associated antimony. Karimian N; Johnston SG; Burton ED J Hazard Mater; 2021 Feb; 404(Pt B):124227. PubMed ID: 33086181 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]