These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 34030395)

  • 1. Soil arsenic toxicity differentially impacts C3 (barley) and C4 (maize) crops under future climate atmospheric CO
    AbdElgawad H; Schoenaers S; Zinta G; Hassan YM; Abdel-Mawgoud M; Alkhalifah DHM; Hozzein WN; Asard H; Abuelsoud W
    J Hazard Mater; 2021 Jul; 414():125331. PubMed ID: 34030395
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Elevated CO
    Selim S; Abuelsoud W; Al-Sanea MM; AbdElgawad H
    Plant Physiol Biochem; 2021 Sep; 166():235-245. PubMed ID: 34126591
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The differential tolerance of C3 and C4 cereals to aluminum toxicity is faded under future CO
    AbdElgawad H; de Soua A; Alotaibi MO; Mohammed AE; Schoenaers S; Selim S; Saleh AM
    Plant Physiol Biochem; 2021 Dec; 169():249-258. PubMed ID: 34808467
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Elevated CO
    Shabbaj II; AbdElgawad H; Balkhyour MA; Tammar A; Madany MMY
    Antioxidants (Basel); 2022 Feb; 11(2):. PubMed ID: 35204191
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An actinomycete strain of Nocardiopsis lucentensis reduces arsenic toxicity in barley and maize.
    AbdElgawad H; Zinta G; Abuelsoud W; Hassan YM; Alkhalifah DHM; Hozzein WN; Zrieq R; Beemster GT; Schoenaers S
    J Hazard Mater; 2021 Sep; 417():126055. PubMed ID: 34229384
    [TBL] [Abstract][Full Text] [Related]  

  • 6. C3 and C4 plant systems respond differently to the concurrent challenges of mercuric oxide nanoparticles and future climate CO
    AbdElgawad H; Hassan YM; Alotaibi MO; Mohammed AE; Saleh AM
    Sci Total Environ; 2020 Dec; 749():142356. PubMed ID: 33370918
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Response of maize biomass and soil water fluxes on elevated CO
    Kellner J; Houska T; Manderscheid R; Weigel HJ; Breuer L; Kraft P
    Glob Chang Biol; 2019 Sep; 25(9):2947-2957. PubMed ID: 31166058
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A doubling of atmospheric CO2 mitigates the effects of severe drought on maize through the preservation of soil water.
    Ripley BS; Bopape TM; Vetter S
    Ann Bot; 2022 Apr; 129(5):607-618. PubMed ID: 35136917
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Elevated CO
    AbdElgawad H; Sheteiwy MS; Saleh AM; Mohammed AE; Alotaibi MO; Beemster GTS; Madany MMY; van Dijk JR
    Chemosphere; 2022 Nov; 307(Pt 3):135880. PubMed ID: 35964713
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interactive effects of mercuric oxide nanoparticles and future climate CO
    Saleh AM; Hassan YM; Habeeb TH; Alkhalaf AA; Hozzein WN; Selim S; AbdElgawad H
    J Hazard Mater; 2021 Jan; 401():123849. PubMed ID: 33113748
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NiO-nanoparticles induce reduced phytotoxic hazards in wheat (Triticum aestivum L.) grown under future climate CO
    Saleh AM; Hassan YM; Selim S; AbdElgawad H
    Chemosphere; 2019 Apr; 220():1047-1057. PubMed ID: 33395791
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Seasonal responses of maize growth and water use to elevated CO
    Ma Y; Wu Y; Song X
    Sci Total Environ; 2020 Nov; 741():140344. PubMed ID: 32603943
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The efficacy of Azotobacter chroococcum in altering maize plant-defense responses to armyworm at elevated CO
    Song Y; Liu J; Fu M; Liu H; Wang W; Wang S; Chen F
    Ecotoxicol Environ Saf; 2022 Dec; 248():114296. PubMed ID: 36399994
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Warming and elevated CO
    Huang Y; Fang R; Li Y; Liu X; Wang G; Yin K; Jin J; Herbert SJ
    Sci Rep; 2019 Nov; 9(1):17948. PubMed ID: 31784668
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Increasing atmospheric CO
    AbdElgawad H; El-Sawah AM; Mohammed AE; Alotaibi MO; Yehia RS; Selim S; Saleh AM; Beemster GTS; Sheteiwy MS
    Chemosphere; 2022 Jun; 296():134044. PubMed ID: 35202662
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of CO2 on the tolerance of photosynthesis to heat stress can be affected by photosynthetic pathway and nitrogen.
    Wang D; Heckathorn SA; Hamilton EW; Frantz J
    Am J Bot; 2014 Jan; 101(1):34-44. PubMed ID: 24355208
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Warming and elevated CO
    Meeran K; Ingrisch J; Reinthaler D; Canarini A; Müller L; Pötsch EM; Richter A; Wanek W; Bahn M
    Glob Chang Biol; 2021 Jul; 27(14):3230-3243. PubMed ID: 33811716
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Future carbon dioxide concentration decreases canopy evapotranspiration and soil water depletion by field-grown maize.
    Hussain MZ; Vanloocke A; Siebers MH; Ruiz-Vera UM; Cody Markelz RJ; Leakey AD; Ort DR; Bernacchi CJ
    Glob Chang Biol; 2013 May; 19(5):1572-84. PubMed ID: 23505040
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Water availability affects seasonal CO
    Pathare VS; Crous KY; Cooke J; Creek D; Ghannoum O; Ellsworth DS
    Glob Chang Biol; 2017 Dec; 23(12):5164-5178. PubMed ID: 28691268
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reduced plant water status under sub-ambient pCO2 limits plant productivity in the wild progenitors of C3 and C4 cereals.
    Cunniff J; Charles M; Jones G; Osborne CP
    Ann Bot; 2016 Nov; 118(6):1163-1173. PubMed ID: 27578764
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.