These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 34030401)

  • 1. Enhancing phytoremediation of hazardous metal(loid)s using genome engineering CRISPR-Cas9 technology.
    Sarma H; Islam NF; Prasad R; Prasad MNV; Ma LQ; Rinklebe J
    J Hazard Mater; 2021 Jul; 414():125493. PubMed ID: 34030401
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CRISPR/Cas9 technology as an innovative approach to enhancing the phytoremediation: Concepts and implications.
    Naz M; Benavides-Mendoza A; Tariq M; Zhou J; Wang J; Qi S; Dai Z; Du D
    J Environ Manage; 2022 Dec; 323():116296. PubMed ID: 36261968
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Halophytes for phytoremediation of hazardous metal(loid)s: A terse review on metal tolerance, bio-indication and hyperaccumulation.
    Aziz I; Mujeeb A
    J Hazard Mater; 2022 Feb; 424(Pt A):127309. PubMed ID: 34600383
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Promises and potential of
    Khan AG
    Int J Phytoremediation; 2020; 22(9):900-915. PubMed ID: 32538143
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Remediation of heavy metal contaminated soils by using Solanum nigrum: A review.
    Rehman MZU; Rizwan M; Ali S; Ok YS; Ishaque W; Saifullah ; Nawaz MF; Akmal F; Waqar M
    Ecotoxicol Environ Saf; 2017 Sep; 143():236-248. PubMed ID: 28551581
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New strategies on the application of artificial intelligence in the field of phytoremediation.
    Singh P; Pani A; Mujumdar AS; Shirkole SS
    Int J Phytoremediation; 2023; 25(4):505-523. PubMed ID: 35802802
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Climate change driven plant-metal-microbe interactions.
    Rajkumar M; Prasad MN; Swaminathan S; Freitas H
    Environ Int; 2013 Mar; 53():74-86. PubMed ID: 23347948
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phytoremediation: Environmentally sustainable way for reclamation of heavy metal polluted soils.
    Ashraf S; Ali Q; Zahir ZA; Ashraf S; Asghar HN
    Ecotoxicol Environ Saf; 2019 Jun; 174():714-727. PubMed ID: 30878808
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phytoremediation of Heavy Metal-Contaminated Sites: Eco-environmental Concerns, Field Studies, Sustainability Issues, and Future Prospects.
    Saxena G; Purchase D; Mulla SI; Saratale GD; Bharagava RN
    Rev Environ Contam Toxicol; 2020; 249():71-131. PubMed ID: 30806802
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In situ phytoremediation of heavy metal-contaminated soil and groundwater: a green inventive approach.
    Shikha D; Singh PK
    Environ Sci Pollut Res Int; 2021 Jan; 28(4):4104-4124. PubMed ID: 33210252
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of sulfur nutrition in plant response to metal(loid) stress: Facilitating biofortification and phytoremediation.
    Cao Y; Ma C; Yu H; Tan Q; Dhankher OP; White JC; Xing B
    J Hazard Mater; 2023 Feb; 443(Pt B):130283. PubMed ID: 36370480
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plants-Microorganisms-Based Bioremediation for Heavy Metal Cleanup: Recent Developments, Phytoremediation Techniques, Regulation Mechanisms, and Molecular Responses.
    Raklami A; Meddich A; Oufdou K; Baslam M
    Int J Mol Sci; 2022 May; 23(9):. PubMed ID: 35563429
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Remediation of metalliferous mines, revegetation challenges and emerging prospects in semi-arid and arid conditions.
    Nirola R; Megharaj M; Beecham S; Aryal R; Thavamani P; Vankateswarlu K; Saint C
    Environ Sci Pollut Res Int; 2016 Oct; 23(20):20131-20150. PubMed ID: 27539471
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modelling assisted phytoremediation of soils contaminated with heavy metals - Main opportunities, limitations, decision making and future prospects.
    Jaskulak M; Grobelak A; Vandenbulcke F
    Chemosphere; 2020 Jun; 249():126196. PubMed ID: 32088456
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Complementarity of co-planting a hyperaccumulator with three metal(loid)-tolerant species for metal(loid)-contaminated soil remediation.
    Zeng P; Guo Z; Xiao X; Peng C; Huang B; Feng W
    Ecotoxicol Environ Saf; 2019 Mar; 169():306-315. PubMed ID: 30458397
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bamboo - An untapped plant resource for the phytoremediation of heavy metal contaminated soils.
    Bian F; Zhong Z; Zhang X; Yang C; Gai X
    Chemosphere; 2020 May; 246():125750. PubMed ID: 31891850
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Remediation techniques for removal of heavy metals from the soil contaminated through different sources: a review.
    Dhaliwal SS; Singh J; Taneja PK; Mandal A
    Environ Sci Pollut Res Int; 2020 Jan; 27(2):1319-1333. PubMed ID: 31808078
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An Overview of Morpho-Physiological, Biochemical, and Molecular Responses of Sorghum Towards Heavy Metal Stress.
    Mishra D; Kumar S; Mishra BN
    Rev Environ Contam Toxicol; 2021; 256():155-177. PubMed ID: 33866418
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phytoremediation potential of twelve wild plant species for toxic elements in a contaminated soil.
    Antoniadis V; Shaheen SM; Stärk HJ; Wennrich R; Levizou E; Merbach I; Rinklebe J
    Environ Int; 2021 Jan; 146():106233. PubMed ID: 33189990
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biotechnological strategies for enhancing heavy metal tolerance in neglected and underutilized legume crops: A comprehensive review.
    Rai KK; Pandey N; Meena RP; Rai SP
    Ecotoxicol Environ Saf; 2021 Jan; 208():111750. PubMed ID: 33396075
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.