BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 34030708)

  • 1. Pan-cancer characterization of metabolism-related biomarkers identifies potential therapeutic targets.
    Bi G; Bian Y; Liang J; Yin J; Li R; Zhao M; Huang Y; Lu T; Zhan C; Fan H; Wang Q
    J Transl Med; 2021 May; 19(1):219. PubMed ID: 34030708
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Micromanaging aerobic respiration and glycolysis in cancer cells.
    Orang AV; Petersen J; McKinnon RA; Michael MZ
    Mol Metab; 2019 May; 23():98-126. PubMed ID: 30837197
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multi-omics characterization and validation of invasiveness-related molecular features across multiple cancer types.
    Bi G; Liang J; Zheng Y; Li R; Zhao M; Huang Y; Zhan C; Xu S; Fan H
    J Transl Med; 2021 Mar; 19(1):124. PubMed ID: 33766047
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multi-omics characterization and validation of MSI-related molecular features across multiple malignancies.
    Zheng Y; Huang Y; Bi G; Du Y; Liang J; Zhao M; Chen Z; Zhan C; Xi J; Wang Q
    Life Sci; 2021 Apr; 270():119081. PubMed ID: 33516699
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling the Genetic Regulation of Cancer Metabolism: Interplay between Glycolysis and Oxidative Phosphorylation.
    Yu L; Lu M; Jia D; Ma J; Ben-Jacob E; Levine H; Kaipparettu BA; Onuchic JN
    Cancer Res; 2017 Apr; 77(7):1564-1574. PubMed ID: 28202516
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Elucidating cancer metabolic plasticity by coupling gene regulation with metabolic pathways.
    Jia D; Lu M; Jung KH; Park JH; Yu L; Onuchic JN; Kaipparettu BA; Levine H
    Proc Natl Acad Sci U S A; 2019 Feb; 116(9):3909-3918. PubMed ID: 30733294
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nutrient deprivation-related OXPHOS/glycolysis interconversion via HIF-1α/C-MYC pathway in U251 cells.
    Liu Z; Sun Y; Tan S; Liu L; Hu S; Huo H; Li M; Cui Q; Yu M
    Tumour Biol; 2016 May; 37(5):6661-71. PubMed ID: 26646563
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lactic acid induces lactate transport and glycolysis/OXPHOS interconversion in glioblastoma.
    Duan K; Liu ZJ; Hu SQ; Huo HY; Xu ZR; Ruan JF; Sun Y; Dai LP; Yan CB; Xiong W; Cui QH; Yu HJ; Yu M; Qin Y
    Biochem Biophys Res Commun; 2018 Sep; 503(2):888-894. PubMed ID: 29928884
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigation of lipid metabolism dysregulation and the effects on immune microenvironments in pan-cancer using multiple omics data.
    Hao Y; Li D; Xu Y; Ouyang J; Wang Y; Zhang Y; Li B; Xie L; Qin G
    BMC Bioinformatics; 2019 May; 20(Suppl 7):195. PubMed ID: 31074374
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mitochondrial pyruvate carrier function determines cell stemness and metabolic reprogramming in cancer cells.
    Li X; Han G; Li X; Kan Q; Fan Z; Li Y; Ji Y; Zhao J; Zhang M; Grigalavicius M; Berge V; Goscinski MA; Nesland JM; Suo Z
    Oncotarget; 2017 Jul; 8(28):46363-46380. PubMed ID: 28624784
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular intricacies of aerobic glycolysis in cancer: current insights into the classic metabolic phenotype.
    Ganapathy-Kanniappan S
    Crit Rev Biochem Mol Biol; 2018 Dec; 53(6):667-682. PubMed ID: 30668176
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular Characterization and Clinical Relevance of Metabolic Expression Subtypes in Human Cancers.
    Peng X; Chen Z; Farshidfar F; Xu X; Lorenzi PL; Wang Y; Cheng F; Tan L; Mojumdar K; Du D; Ge Z; Li J; Thomas GV; Birsoy K; Liu L; Zhang H; Zhao Z; Marchand C; Weinstein JN; ; Bathe OF; Liang H
    Cell Rep; 2018 Apr; 23(1):255-269.e4. PubMed ID: 29617665
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic reprogramming and interventions in endometrial carcinoma.
    Li J; Yang H; Zhang L; Zhang S; Dai Y
    Biomed Pharmacother; 2023 May; 161():114526. PubMed ID: 36933381
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Targeting STAT3 and oxidative phosphorylation in oncogene-addicted tumors.
    Lee M; Hirpara JL; Eu JQ; Sethi G; Wang L; Goh BC; Wong AL
    Redox Biol; 2019 Jul; 25():101073. PubMed ID: 30594485
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lactic acidosis switches cancer cells from aerobic glycolysis back to dominant oxidative phosphorylation.
    Wu H; Ying M; Hu X
    Oncotarget; 2016 Jun; 7(26):40621-40629. PubMed ID: 27259254
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Targeting respiratory complex I to prevent the Warburg effect.
    Vatrinet R; Iommarini L; Kurelac I; De Luise M; Gasparre G; Porcelli AM
    Int J Biochem Cell Biol; 2015 Jun; 63():41-5. PubMed ID: 25668477
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Linking metabolic reprogramming to therapy resistance in cancer.
    Morandi A; Indraccolo S
    Biochim Biophys Acta Rev Cancer; 2017 Aug; 1868(1):1-6. PubMed ID: 28065746
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification and Development of Subtypes With Poor Prognosis in Pan-Gynecological Cancer Based on Gene Expression in the Glycolysis-Cholesterol Synthesis Axis.
    Wang G; Liu X; Wang D; Sun M; Yang Q
    Front Oncol; 2021; 11():636565. PubMed ID: 33842342
    [No Abstract]   [Full Text] [Related]  

  • 19. p53 and glucose metabolism: an orchestra to be directed in cancer therapy.
    Gomes AS; Ramos H; Soares J; Saraiva L
    Pharmacol Res; 2018 May; 131():75-86. PubMed ID: 29580896
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The lncRNA SNHG3 regulates energy metabolism of ovarian cancer by an analysis of mitochondrial proteomes.
    Li N; Zhan X; Zhan X
    Gynecol Oncol; 2018 Aug; 150(2):343-354. PubMed ID: 29921511
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.