These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 34030744)
1. Using tri-axial accelerometer loggers to identify spawning behaviours of large pelagic fish. Clarke TM; Whitmarsh SK; Hounslow JL; Gleiss AC; Payne NL; Huveneers C Mov Ecol; 2021 May; 9(1):26. PubMed ID: 34030744 [TBL] [Abstract][Full Text] [Related]
2. Limitations of using surrogates for behaviour classification of accelerometer data: refining methods using random forest models in Caprids. Dickinson ER; Twining JP; Wilson R; Stephens PA; Westander J; Marks N; Scantlebury DM Mov Ecol; 2021 Jun; 9(1):28. PubMed ID: 34099067 [TBL] [Abstract][Full Text] [Related]
3. Identifying animal behaviours from accelerometers: Improving predictive accuracy of machine learning by refining the variables selected, data frequency, and sample duration. Dunford CE; Marks NJ; Wilson RP; Scantlebury DM Ecol Evol; 2024 May; 14(5):e11380. PubMed ID: 38756684 [TBL] [Abstract][Full Text] [Related]
4. Combined use of two supervised learning algorithms to model sea turtle behaviours from tri-axial acceleration data. Jeantet L; Dell'Amico F; Forin-Wiart MA; Coutant M; Bonola M; Etienne D; Gresser J; Regis S; Lecerf N; Lefebvre F; de Thoisy B; Le Maho Y; Brucker M; Châtelain N; Laesser R; Crenner F; Handrich Y; Wilson R; Chevallier D J Exp Biol; 2018 May; 221(Pt 10):. PubMed ID: 29661804 [TBL] [Abstract][Full Text] [Related]
5. Categorising cheetah behaviour using tri-axial accelerometer data loggers: a comparison of model resolution and data logger performance. McGowan NE; Marks NJ; Maule AG; Schmidt-Küntzel A; Marker LL; Scantlebury DM Mov Ecol; 2022 Feb; 10(1):7. PubMed ID: 35123592 [TBL] [Abstract][Full Text] [Related]
6. Classification of Behaviour in Conventional and Slow-Growing Strains of Broiler Chickens Using Tri-Axial Accelerometers. Pearce J; Chang YM; Xia D; Abeyesinghe S Animals (Basel); 2024 Jul; 14(13):. PubMed ID: 38998070 [TBL] [Abstract][Full Text] [Related]
7. Measuring abnormal movements in free-swimming fish with accelerometers: implications for quantifying tag and parasite load. Broell F; Burnell C; Taggart CT J Exp Biol; 2016 Mar; 219(Pt 5):695-705. PubMed ID: 26747901 [TBL] [Abstract][Full Text] [Related]
8. Using Machine Learning for Remote Behaviour Classification-Verifying Acceleration Data to Infer Feeding Events in Free-Ranging Cheetahs. Giese L; Melzheimer J; Bockmühl D; Wasiolka B; Rast W; Berger A; Wachter B Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34450868 [TBL] [Abstract][Full Text] [Related]
10. Assessment of Machine Learning Models to Identify Port Jackson Shark Behaviours Using Tri-Axial Accelerometers. Kadar JP; Ladds MA; Day J; Lyall B; Brown C Sensors (Basel); 2020 Dec; 20(24):. PubMed ID: 33322308 [TBL] [Abstract][Full Text] [Related]
11. Classification of broiler behaviours using triaxial accelerometer and machine learning. Yang X; Zhao Y; Street GM; Huang Y; Filip To SD; Purswell JL Animal; 2021 Jul; 15(7):100269. PubMed ID: 34102430 [TBL] [Abstract][Full Text] [Related]
12. Seeing It All: Evaluating Supervised Machine Learning Methods for the Classification of Diverse Otariid Behaviours. Ladds MA; Thompson AP; Slip DJ; Hocking DP; Harcourt RG PLoS One; 2016; 11(12):e0166898. PubMed ID: 28002450 [TBL] [Abstract][Full Text] [Related]
13. The Use of Triaxial Accelerometers and Machine Learning Algorithms for Behavioural Identification in Domestic Cats ( Smit M; Ikurior SJ; Corner-Thomas RA; Andrews CJ; Draganova I; Thomas DG Sensors (Basel); 2023 Aug; 23(16):. PubMed ID: 37631701 [TBL] [Abstract][Full Text] [Related]
14. Machine learning goes wild: Using data from captive individuals to infer wildlife behaviours. Rast W; Kimmig SE; Giese L; Berger A PLoS One; 2020; 15(5):e0227317. PubMed ID: 32369485 [TBL] [Abstract][Full Text] [Related]
15. Use of a gyroscope/accelerometer data logger to identify alternative feeding behaviours in fish. Kawabata Y; Noda T; Nakashima Y; Nanami A; Sato T; Takebe T; Mitamura H; Arai N; Yamaguchi T; Soyano K J Exp Biol; 2014 Sep; 217(Pt 18):3204-8. PubMed ID: 25013109 [TBL] [Abstract][Full Text] [Related]
16. Development and application of a machine learning algorithm for classification of elasmobranch behaviour from accelerometry data. Brewster LR; Dale JJ; Guttridge TL; Gruber SH; Hansell AC; Elliott M; Cowx IG; Whitney NM; Gleiss AC Mar Biol; 2018; 165(4):62. PubMed ID: 29563648 [TBL] [Abstract][Full Text] [Related]
17. Movement, resting, and attack behaviors of wild pumas are revealed by tri-axial accelerometer measurements. Wang Y; Nickel B; Rutishauser M; Bryce CM; Williams TM; Elkaim G; Wilmers CC Mov Ecol; 2015; 3(1):2. PubMed ID: 25709837 [TBL] [Abstract][Full Text] [Related]
18. Quantifying finer-scale behaviours using self-organising maps (SOMs) to link accelerometery signatures with behavioural patterns in free-roaming terrestrial animals. Galea N; Murphy F; Gaschk JL; Schoeman DS; Clemente CJ Sci Rep; 2021 Jun; 11(1):13566. PubMed ID: 34193910 [TBL] [Abstract][Full Text] [Related]
19. Classification of sex-dependent specific behaviours by tri-axial acceleration in the tegu lizard Salvator merianae. Guadalupe-Silva A; Zena LA; Hervas LS; Rios VP; Gargaglioni LH; Buck CL; Bícego KC Comp Biochem Physiol A Mol Integr Physiol; 2024 Dec; 298():111744. PubMed ID: 39293558 [TBL] [Abstract][Full Text] [Related]
20. Identification of animal movement patterns using tri-axial magnetometry. Williams HJ; Holton MD; Shepard ELC; Largey N; Norman B; Ryan PG; Duriez O; Scantlebury M; Quintana F; Magowan EA; Marks NJ; Alagaili AN; Bennett NC; Wilson RP Mov Ecol; 2017; 5():6. PubMed ID: 28357113 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]