These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 34030744)
41. Gait and posture discrimination in sheep using a tri-axial accelerometer. Radeski M; Ilieski V Animal; 2017 Jul; 11(7):1249-1257. PubMed ID: 27903315 [TBL] [Abstract][Full Text] [Related]
42. Coupling spectral analysis and hidden Markov models for the segmentation of behavioural patterns. Heerah K; Woillez M; Fablet R; Garren F; Martin S; De Pontual H Mov Ecol; 2017; 5():20. PubMed ID: 28944062 [TBL] [Abstract][Full Text] [Related]
43. The role of individual variability on the predictive performance of machine learning applied to large bio-logging datasets. Chimienti M; Kato A; Hicks O; Angelier F; Beaulieu M; Ouled-Cheikh J; Marciau C; Raclot T; Tucker M; Wisniewska DM; Chiaradia A; Ropert-Coudert Y Sci Rep; 2022 Nov; 12(1):19737. PubMed ID: 36396680 [TBL] [Abstract][Full Text] [Related]
44. How to treat mixed behavior segments in supervised machine learning of behavioural modes from inertial measurement data. Resheff YS; Bensch HM; Zöttl M; Harel R; Matsumoto-Oda A; Crofoot MC; Gomez S; Börger L; Rotics S Mov Ecol; 2024 Jun; 12(1):44. PubMed ID: 38858733 [TBL] [Abstract][Full Text] [Related]
45. Estimating fish swimming metrics and metabolic rates with accelerometers: the influence of sampling frequency. Brownscombe JW; Lennox RJ; Danylchuk AJ; Cooke SJ J Fish Biol; 2018 Aug; 93(2):207-214. PubMed ID: 29931782 [TBL] [Abstract][Full Text] [Related]
47. An open-source tool to identify active travel from hip-worn accelerometer, GPS and GIS data. Procter DS; Page AS; Cooper AR; Nightingale CM; Ram B; Rudnicka AR; Whincup PH; Clary C; Lewis D; Cummins S; Ellaway A; Giles-Corti B; Cook DG; Owen CG Int J Behav Nutr Phys Act; 2018 Sep; 15(1):91. PubMed ID: 30241483 [TBL] [Abstract][Full Text] [Related]
48. Accelerometer tags: detecting and identifying activities in fish and the effect of sampling frequency. Broell F; Noda T; Wright S; Domenici P; Steffensen JF; Auclair JP; Taggart CT J Exp Biol; 2013 Apr; 216(Pt 7):1255-64. PubMed ID: 23197088 [TBL] [Abstract][Full Text] [Related]
49. Behavioural inference from signal processing using animal-borne multi-sensor loggers: a novel solution to extend the knowledge of sea turtle ecology. Jeantet L; Planas-Bielsa V; Benhamou S; Geiger S; Martin J; Siegwalt F; Lelong P; Gresser J; Etienne D; Hiélard G; Arque A; Regis S; Lecerf N; Frouin C; Benhalilou A; Murgale C; Maillet T; Andreani L; Campistron G; Delvaux H; Guyon C; Richard S; Lefebvre F; Aubert N; Habold C; le Maho Y; Chevallier D R Soc Open Sci; 2020 May; 7(5):200139. PubMed ID: 32537218 [TBL] [Abstract][Full Text] [Related]
50. Machine Learning Algorithms to Classify and Quantify Multiple Behaviours in Dairy Calves Using a Sensor: Moving beyond Classification in Precision Livestock. Carslake C; Vázquez-Diosdado JA; Kaler J Sensors (Basel); 2020 Dec; 21(1):. PubMed ID: 33375636 [TBL] [Abstract][Full Text] [Related]
51. Alternative reproductive tactics and inverse size-assortment in a high-density fish spawning aggregation. Karkarey R; Zambre A; Isvaran K; Arthur R BMC Ecol; 2017 Feb; 17(1):10. PubMed ID: 28245824 [TBL] [Abstract][Full Text] [Related]
52. An analysis of reproductive behavior in the mouthbreeding cichlid fish, Tilapia macrocephala (Bleeker). ARONSON LR Zool Sci Contrib N Y Zool Soc; 1949; 34(Pt. 3):133-58. PubMed ID: 18268802 [TBL] [Abstract][Full Text] [Related]
53. Analysis of Accelerometer and GPS Data for Cattle Behaviour Identification and Anomalous Events Detection. Cabezas J; Yubero R; Visitación B; Navarro-García J; Algar MJ; Cano EL; Ortega F Entropy (Basel); 2022 Feb; 24(3):. PubMed ID: 35327847 [TBL] [Abstract][Full Text] [Related]
55. Behavioural compass: animal behaviour recognition using magnetometers. Chakravarty P; Maalberg M; Cozzi G; Ozgul A; Aminian K Mov Ecol; 2019; 7():28. PubMed ID: 31485331 [TBL] [Abstract][Full Text] [Related]
56. Application of machine learning algorithms to identify cryptic reproductive habitats using diverse information sources. Brownscombe JW; Griffin LP; Morley D; Acosta A; Hunt J; Lowerre-Barbieri SK; Adams AJ; Danylchuk AJ; Cooke SJ Oecologia; 2020 Oct; 194(1-2):283-298. PubMed ID: 33006076 [TBL] [Abstract][Full Text] [Related]
57. Monitoring canid scent marking in space and time using a biologging and machine learning approach. Bidder OR; di Virgilio A; Hunter JS; McInturff A; Gaynor KM; Smith AM; Dorcy J; Rosell F Sci Rep; 2020 Jan; 10(1):588. PubMed ID: 31953418 [TBL] [Abstract][Full Text] [Related]
58. Cross-validation and out-of-sample testing of physical activity intensity predictions with a wrist-worn accelerometer. Montoye AHK; Westgate BS; Fonley MR; Pfeiffer KA J Appl Physiol (1985); 2018 May; 124(5):1284-1293. PubMed ID: 29369742 [TBL] [Abstract][Full Text] [Related]
59. A Pilot Study Using Accelerometers to Characterise the Licking Behaviour of Penned Cattle at a Mineral Block Supplement. Simanungkalit G; Barwick J; Cowley F; Dobos R; Hegarty R Animals (Basel); 2021 Apr; 11(4):. PubMed ID: 33920600 [TBL] [Abstract][Full Text] [Related]
60. Video Validation of Tri-Axial Accelerometer for Monitoring Zoo-Housed Pavese S; Centeno C; Von Fersen L; Eguizábal GV; Donet L; Asencio CJ; Villarreal DP; Busso JM Animals (Basel); 2022 Sep; 12(19):. PubMed ID: 36230257 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]