These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 34031394)

  • 1. CRISPECTOR provides accurate estimation of genome editing translocation and off-target activity from comparative NGS data.
    Amit I; Iancu O; Levy-Jurgenson A; Kurgan G; McNeill MS; Rettig GR; Allen D; Breier D; Ben Haim N; Wang Y; Anavy L; Hendel A; Yakhini Z
    Nat Commun; 2021 May; 12(1):3042. PubMed ID: 34031394
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Amplification-free long-read sequencing reveals unforeseen CRISPR-Cas9 off-target activity.
    Höijer I; Johansson J; Gudmundsson S; Chin CS; Bunikis I; Häggqvist S; Emmanouilidou A; Wilbe M; den Hoed M; Bondeson ML; Feuk L; Gyllensten U; Ameur A
    Genome Biol; 2020 Dec; 21(1):290. PubMed ID: 33261648
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Web-Based CRISPR Toolkits: Cas-OFFinder, Cas-Designer, and Cas-Analyzer.
    Hwang GH; Kim JS; Bae S
    Methods Mol Biol; 2021; 2162():23-33. PubMed ID: 32926375
    [TBL] [Abstract][Full Text] [Related]  

  • 4. OffScan: a universal and fast CRISPR off-target sites detection tool.
    Cui Y; Liao X; Peng S; Tang T; Huang C; Yang C
    BMC Genomics; 2020 Mar; 21(Suppl 1):872. PubMed ID: 32138651
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tools for experimental and computational analyses of off-target editing by programmable nucleases.
    Bao XR; Pan Y; Lee CM; Davis TH; Bao G
    Nat Protoc; 2021 Jan; 16(1):10-26. PubMed ID: 33288953
    [TBL] [Abstract][Full Text] [Related]  

  • 6. WheatCRISPR: a web-based guide RNA design tool for CRISPR/Cas9-mediated genome editing in wheat.
    Cram D; Kulkarni M; Buchwaldt M; Rajagopalan N; Bhowmik P; Rozwadowski K; Parkin IAP; Sharpe AG; Kagale S
    BMC Plant Biol; 2019 Nov; 19(1):474. PubMed ID: 31694550
    [TBL] [Abstract][Full Text] [Related]  

  • 7. VARSCOT: variant-aware detection and scoring enables sensitive and personalized off-target detection for CRISPR-Cas9.
    Wilson LOW; Hetzel S; Pockrandt C; Reinert K; Bauer DC
    BMC Biotechnol; 2019 Jun; 19(1):40. PubMed ID: 31248401
    [TBL] [Abstract][Full Text] [Related]  

  • 8. FokI-dCas9 mediates high-fidelity genome editing in pigs.
    Fisicaro N; Salvaris EJ; Philip GK; Wakefield MJ; Nottle MB; Hawthorne WJ; Cowan PJ
    Xenotransplantation; 2020 Jan; 27(1):e12551. PubMed ID: 31407391
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational Tools and Resources Supporting CRISPR-Cas Experiments.
    Sledzinski P; Nowaczyk M; Olejniczak M
    Cells; 2020 May; 9(5):. PubMed ID: 32455882
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Doxycycline-Dependent Self-Inactivation of CRISPR-Cas9 to Temporally Regulate On- and Off-Target Editing.
    Kelkar A; Zhu Y; Groth T; Stolfa G; Stablewski AB; Singhi N; Nemeth M; Neelamegham S
    Mol Ther; 2020 Jan; 28(1):29-41. PubMed ID: 31601489
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification and Validation of CRISPR/Cas9 Off-Target Activity in Hematopoietic Stem and Progenitor Cells.
    Park SH; Lee CM; Bao G
    Methods Mol Biol; 2022; 2429():281-306. PubMed ID: 35507169
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CRISPRoff enables spatio-temporal control of CRISPR editing.
    Carlson-Stevermer J; Kelso R; Kadina A; Joshi S; Rossi N; Walker J; Stoner R; Maures T
    Nat Commun; 2020 Oct; 11(1):5041. PubMed ID: 33028827
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CRISPR-Cas9 Editing in Maize: Systematic Evaluation of Off-target Activity and Its Relevance in Crop Improvement.
    Young J; Zastrow-Hayes G; Deschamps S; Svitashev S; Zaremba M; Acharya A; Paulraj S; Peterson-Burch B; Schwartz C; Djukanovic V; Lenderts B; Feigenbutz L; Wang L; Alarcon C; Siksnys V; May G; Chilcoat ND; Kumar S
    Sci Rep; 2019 Apr; 9(1):6729. PubMed ID: 31040331
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantifying allele-specific CRISPR editing activity with CRISPECTOR2.0.
    Assa G; Kalter N; Rosenberg M; Beck A; Markovich O; Gontmakher T; Hendel A; Yakhini Z
    Nucleic Acids Res; 2024 Jul; ():. PubMed ID: 39077930
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Current advances in overcoming obstacles of CRISPR/Cas9 off-target genome editing.
    Aquino-Jarquin G
    Mol Genet Metab; 2021; 134(1-2):77-86. PubMed ID: 34391646
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accurate analysis of genuine CRISPR editing events with ampliCan.
    Labun K; Guo X; Chavez A; Church G; Gagnon JA; Valen E
    Genome Res; 2019 May; 29(5):843-847. PubMed ID: 30850374
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Technologies and Computational Analysis Strategies for CRISPR Applications.
    Clement K; Hsu JY; Canver MC; Joung JK; Pinello L
    Mol Cell; 2020 Jul; 79(1):11-29. PubMed ID: 32619467
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Current Bioinformatics Tools to Optimize CRISPR/Cas9 Experiments to Reduce Off-Target Effects.
    Naeem M; Alkhnbashi OS
    Int J Mol Sci; 2023 Mar; 24(7):. PubMed ID: 37047235
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detection of CRISPR/Cas9-Generated Off-Target Effect by Integration-Defective Lentiviral Vector.
    Wang X; Wu Y; Yee JK
    Methods Mol Biol; 2021; 2162():243-260. PubMed ID: 32926387
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CROP: a CRISPR/Cas9 guide selection program based on mapping guide variants.
    Aprilyanto V; Aditama R; Tanjung ZA; Utomo C; Liwang T
    Sci Rep; 2021 Jan; 11(1):1504. PubMed ID: 33452424
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.