These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 34031414)

  • 1. Global health effects of future atmospheric mercury emissions.
    Zhang Y; Song Z; Huang S; Zhang P; Peng Y; Wu P; Gu J; Dutkiewicz S; Zhang H; Wu S; Wang F; Chen L; Wang S; Li P
    Nat Commun; 2021 May; 12(1):3035. PubMed ID: 34031414
    [TBL] [Abstract][Full Text] [Related]  

  • 2. How closely do mercury trends in fish and other aquatic wildlife track those in the atmosphere? - Implications for evaluating the effectiveness of the Minamata Convention.
    Wang F; Outridge PM; Feng X; Meng B; Heimbürger-Boavida LE; Mason RP
    Sci Total Environ; 2019 Jul; 674():58-70. PubMed ID: 31003088
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Global change and mercury cycling: challenges for implementing a global mercury treaty.
    Selin NE
    Environ Toxicol Chem; 2014 Jun; 33(6):1202-10. PubMed ID: 24038450
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interpretation of the source-specific substantive control measures of the Minamata Convention on Mercury.
    You M
    Environ Int; 2015 Feb; 75():1-10. PubMed ID: 25461410
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Global Sources and Pathways of Mercury in the Context of Human Health.
    Sundseth K; Pacyna JM; Pacyna EG; Pirrone N; Thorne RJ
    Int J Environ Res Public Health; 2017 Jan; 14(1):. PubMed ID: 28117743
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mercury pollution in China: implications on the implementation of the Minamata Convention.
    Feng X; Li P; Fu X; Wang X; Zhang H; Lin CJ
    Environ Sci Process Impacts; 2022 May; 24(5):634-648. PubMed ID: 35485580
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Responses of deposition and bioaccumulation in the Great Lakes region to policy and other large-scale drivers of mercury emissions.
    Perlinger JA; Urban NR; Giang A; Selin NE; Hendricks AN; Zhang H; Kumar A; Wu S; Gagnon VS; Gorman HS; Norman ES
    Environ Sci Process Impacts; 2018 Jan; 20(1):195-209. PubMed ID: 29360116
    [TBL] [Abstract][Full Text] [Related]  

  • 8. What are the likely changes in mercury concentration in the Arctic atmosphere and ocean under future emissions scenarios?
    Schartup AT; Soerensen AL; Angot H; Bowman K; Selin NE
    Sci Total Environ; 2022 Aug; 836():155477. PubMed ID: 35472347
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Benefits of mercury controls for the United States.
    Giang A; Selin NE
    Proc Natl Acad Sci U S A; 2016 Jan; 113(2):286-91. PubMed ID: 26712021
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mercury Benefits of Climate Policy in China: Addressing the Paris Agreement and the Minamata Convention Simultaneously.
    Mulvaney KM; Selin NE; Giang A; Muntean M; Li CT; Zhang D; Angot H; Thackray CP; Karplus VJ
    Environ Sci Technol; 2020 Feb; 54(3):1326-1335. PubMed ID: 31899622
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Global change effects on biogeochemical mercury cycling.
    Sonke JE; Angot H; Zhang Y; Poulain A; Björn E; Schartup A
    Ambio; 2023 May; 52(5):853-876. PubMed ID: 36988895
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Linking science and policy to support the implementation of the Minamata Convention on Mercury.
    Selin H; Keane SE; Wang S; Selin NE; Davis K; Bally D
    Ambio; 2018 Mar; 47(2):198-215. PubMed ID: 29388129
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Looping Mercury Cycle in Global Environmental-Economic System Modeling.
    Li Y; Chen L; Liang S; Zhou H; Liu YR; Zhong H; Yang Z
    Environ Sci Technol; 2022 Mar; 56(5):2861-2879. PubMed ID: 35129955
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Minamata Convention on Mercury: attempting to address the global controversy of dental amalgam use and mercury waste disposal.
    Mackey TK; Contreras JT; Liang BA
    Sci Total Environ; 2014 Feb; 472():125-9. PubMed ID: 24291137
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Influence of Climate Change on Atmospheric Deposition of Mercury in the Arctic—A Model Sensitivity Study.
    Hansen KM; Christensen JH; Brandt J
    Int J Environ Res Public Health; 2015 Sep; 12(9):11254-68. PubMed ID: 26378551
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancing atmospheric mercury research in China to improve the current understanding of the global mercury cycle: the need for urgent and closely coordinated efforts.
    Ci Z; Zhang X; Wang Z
    Environ Sci Technol; 2012 Jun; 46(11):5636-42. PubMed ID: 22493995
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Over a decade of atmospheric mercury monitoring at Amsterdam Island in the French Southern and Antarctic Lands.
    Magand O; Angot H; Bertrand Y; Sonke JE; Laffont L; Duperray S; Collignon L; Boulanger D; Dommergue A
    Sci Data; 2023 Nov; 10(1):836. PubMed ID: 38016986
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mercury as a global pollutant: sources, pathways, and effects.
    Driscoll CT; Mason RP; Chan HM; Jacob DJ; Pirrone N
    Environ Sci Technol; 2013 May; 47(10):4967-83. PubMed ID: 23590191
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Global and Local Impacts of Delayed Mercury Mitigation Efforts.
    Angot H; Hoffman N; Giang A; Thackray CP; Hendricks AN; Urban NR; Selin NE
    Environ Sci Technol; 2018 Nov; 52(22):12968-12977. PubMed ID: 30376303
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anthropogenic short-lived halogens increase human exposure to mercury contamination due to enhanced mercury oxidation over continents.
    Fu X; Sun X; Travnikov O; Li Q; Qin C; Cuevas CA; Fernandez RP; Mahajan AS; Wang S; Wang T; Saiz-Lopez A
    Proc Natl Acad Sci U S A; 2024 Mar; 121(12):e2315058121. PubMed ID: 38466839
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.