These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 34031414)

  • 21. A Modeling Comparison of Mercury Deposition from Current Anthropogenic Mercury Emission Inventories.
    Simone FD; Gencarelli CN; Hedgecock IM; Pirrone N
    Environ Sci Technol; 2016 May; 50(10):5154-62. PubMed ID: 27120197
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Atmospheric mercury in the Canadian Arctic. Part II: insight from modeling.
    Dastoor A; Ryzhkov A; Durnford D; Lehnherr I; Steffen A; Morrison H
    Sci Total Environ; 2015 Mar; 509-510():16-27. PubMed ID: 25604938
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mercury policy and regulations for coal-fired power plants.
    Rallo M; Lopez-Anton MA; Contreras ML; Maroto-Valer MM
    Environ Sci Pollut Res Int; 2012 May; 19(4):1084-96. PubMed ID: 22090257
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evaluating the effectiveness of the Minamata Convention on Mercury: Principles and recommendations for next steps.
    Evers DC; Keane SE; Basu N; Buck D
    Sci Total Environ; 2016 Nov; 569-570():888-903. PubMed ID: 27425440
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Health risk assessment of gaseous elemental mercury (GEM) in Mexico City.
    Schiavo B; Morton-Bermea O; Salgado-Martínez E; García-Martínez R; Hernández-Álvarez E
    Environ Monit Assess; 2022 May; 194(7):456. PubMed ID: 35612636
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The mercury science-policy interface: History, evolution and progress of the Minamata Convention.
    Bank MS
    Sci Total Environ; 2020 Jun; 722():137832. PubMed ID: 32208250
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Connecting mercury science to policy: from sources to seafood.
    Chen CY; Driscoll CT; Lambert KF; Mason RP; Sunderland EM
    Rev Environ Health; 2016 Mar; 31(1):17-20. PubMed ID: 26820177
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Mercury as a Global Pollutant and Mercury Exposure Assessment and Health Effects].
    Sakamoto M; Nakamura M; Murata K
    Nihon Eiseigaku Zasshi; 2018; 73(3):258-264. PubMed ID: 30270289
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Special issue on the AMAP 2021 assessment of mercury in the Arctic.
    Dietz R; Wilson S; Loseto LL; Dommergue A; Xie Z; Sonne C; Chételat J
    Sci Total Environ; 2022 Oct; 843():157020. PubMed ID: 35764153
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Spatially Explicit Global Hotspots Driving China's Mercury Related Health Impacts.
    Li Y; Chen L; Liang S; Qi J; Zhou H; Feng C; Yang X; Wu X; Mi Z; Yang Z
    Environ Sci Technol; 2020 Nov; 54(22):14547-14557. PubMed ID: 33112142
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mercury pollution in modern times and its socio-medical consequences.
    Budnik LT; Casteleyn L
    Sci Total Environ; 2019 Mar; 654():720-734. PubMed ID: 30448663
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Polar firn air reveals large-scale impact of anthropogenic mercury emissions during the 1970s.
    Faïn X; Ferrari CP; Dommergue A; Albert MR; Battle M; Severinghaus J; Arnaud L; Barnola JM; Cairns W; Barbante C; Boutron C
    Proc Natl Acad Sci U S A; 2009 Sep; 106(38):16114-9. PubMed ID: 19805267
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Impact of global warming on regional cycling of mercury and persistent organic pollutants on the Tibetan Plateau: current progress and future prospects.
    Chai L; Zhou Y; Wang X
    Environ Sci Process Impacts; 2022 Oct; 24(10):1616-1630. PubMed ID: 35770617
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Global source-receptor relationships for mercury deposition under present-day and 2050 emissions scenarios.
    Corbitt ES; Jacob DJ; Holmes CD; Streets DG; Sunderland EM
    Environ Sci Technol; 2011 Dec; 45(24):10477-84. PubMed ID: 22050654
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Modeling mercury isotopic fractionation in the atmosphere.
    Song Z; Sun R; Zhang Y
    Environ Pollut; 2022 Aug; 307():119588. PubMed ID: 35688392
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Inversion Approach to Validate Mercury Emissions Based on Background Air Monitoring at the High Altitude Research Station Jungfraujoch (3580 m).
    Denzler B; Bogdal C; Henne S; Obrist D; Steinbacher M; Hungerbühler K
    Environ Sci Technol; 2017 Mar; 51(5):2846-2853. PubMed ID: 28191932
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Status and trends of mercury pollution of the atmosphere and terrestrial ecosystems in Poland.
    Jędruch A; Falkowska L; Saniewska D; Durkalec M; Nawrocka A; Kalisińska E; Kowalski A; Pacyna JM
    Ambio; 2021 Sep; 50(9):1698-1717. PubMed ID: 33755895
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Human Biological Monitoring of Mercury Through Hair Samples in China.
    Li P; Guo S; Zhao J; Gao Y; Li YF
    Bull Environ Contam Toxicol; 2019 May; 102(5):701-707. PubMed ID: 30739139
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Impacts of anthropogenic emissions and meteorology on mercury deposition over lake vs land surface in upstate New York.
    Ye Z; Mao H; Driscoll CT
    Ecotoxicology; 2020 Dec; 29(10):1590-1601. PubMed ID: 31586287
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Two decades of changing anthropogenic mercury emissions in Australia: inventory development, trends, and atmospheric implications.
    MacFarlane S; Fisher JA; Horowitz HM; Shah V
    Environ Sci Process Impacts; 2022 Sep; 24(9):1474-1493. PubMed ID: 35603632
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.