These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Wirelessly powered, fully internal optogenetics for brain, spinal and peripheral circuits in mice. Montgomery KL; Yeh AJ; Ho JS; Tsao V; Mohan Iyer S; Grosenick L; Ferenczi EA; Tanabe Y; Deisseroth K; Delp SL; Poon AS Nat Methods; 2015 Oct; 12(10):969-74. PubMed ID: 26280330 [TBL] [Abstract][Full Text] [Related]
4. Flexible and fully implantable upconversion device for wireless optogenetic stimulation of the spinal cord in behaving animals. Wang Y; Xie K; Yue H; Chen X; Luo X; Liao Q; Liu M; Wang F; Shi P Nanoscale; 2020 Jan; 12(4):2406-2414. PubMed ID: 31782467 [TBL] [Abstract][Full Text] [Related]
5. Fabrication and application of flexible, multimodal light-emitting devices for wireless optogenetics. McCall JG; Kim TI; Shin G; Huang X; Jung YH; Al-Hasani R; Omenetto FG; Bruchas MR; Rogers JA Nat Protoc; 2013 Dec; 8(12):2413-2428. PubMed ID: 24202555 [TBL] [Abstract][Full Text] [Related]
6. Epidural optogenetics for controlled analgesia. Bonin RP; Wang F; Desrochers-Couture M; Ga Secka A; Boulanger ME; Côté DC; De Koninck Y Mol Pain; 2016; 12():. PubMed ID: 27030718 [TBL] [Abstract][Full Text] [Related]
7. Soft, stretchable, fully implantable miniaturized optoelectronic systems for wireless optogenetics. Park SI; Brenner DS; Shin G; Morgan CD; Copits BA; Chung HU; Pullen MY; Noh KN; Davidson S; Oh SJ; Yoon J; Jang KI; Samineni VK; Norman M; Grajales-Reyes JG; Vogt SK; Sundaram SS; Wilson KM; Ha JS; Xu R; Pan T; Kim TI; Huang Y; Montana MC; Golden JP; Bruchas MR; Gereau RW; Rogers JA Nat Biotechnol; 2015 Dec; 33(12):1280-1286. PubMed ID: 26551059 [TBL] [Abstract][Full Text] [Related]
8. Wireless, battery-free, subdermally implantable platforms for transcranial and long-range optogenetics in freely moving animals. Ausra J; Wu M; Zhang X; Vázquez-Guardado A; Skelton P; Peralta R; Avila R; Murickan T; Haney CR; Huang Y; Rogers JA; Kozorovitskiy Y; Gutruf P Proc Natl Acad Sci U S A; 2021 Jul; 118(30):. PubMed ID: 34301889 [TBL] [Abstract][Full Text] [Related]
9. Stretchable multichannel antennas in soft wireless optoelectronic implants for optogenetics. Park SI; Shin G; McCall JG; Al-Hasani R; Norris A; Xia L; Brenner DS; Noh KN; Bang SY; Bhatti DL; Jang KI; Kang SK; Mickle AD; Dussor G; Price TJ; Gereau RW; Bruchas MR; Rogers JA Proc Natl Acad Sci U S A; 2016 Dec; 113(50):E8169-E8177. PubMed ID: 27911798 [TBL] [Abstract][Full Text] [Related]
10. Optogenetic Targeting of Mouse Vagal Afferents Using an Organ-specific, Scalable, Wireless Optoelectronic Device. Hong S; Kim WS; Han Y; Cherukuri R; Jung H; Campos C; Wu Q; Park SI Bio Protoc; 2022 Mar; 12(5):e4341. PubMed ID: 35592610 [TBL] [Abstract][Full Text] [Related]
11. A micro-LED implant and technique for optogenetic stimulation of the rat spinal cord. Mondello SE; Pedigo BD; Sunshine MD; Fischedick AE; Horner PJ; Moritz CT Exp Neurol; 2021 Jan; 335():113480. PubMed ID: 32991934 [TBL] [Abstract][Full Text] [Related]
13. Implantable Micro-Light-Emitting Diode (µLED)-based optogenetic interfaces toward human applications. Hee Lee J; Lee S; Kim D; Jae Lee K Adv Drug Deliv Rev; 2022 Aug; 187():114399. PubMed ID: 35716898 [TBL] [Abstract][Full Text] [Related]
14. Customizable, wireless and implantable neural probe design and fabrication via 3D printing. Parker KE; Lee J; Kim JR; Kawakami C; Kim CY; Qazi R; Jang KI; Jeong JW; McCall JG Nat Protoc; 2023 Jan; 18(1):3-21. PubMed ID: 36271159 [TBL] [Abstract][Full Text] [Related]
15. Optogenetic Manipulation of Neuronal Activity to Modulate Behavior in Freely Moving Mice. Berg L; Gerdey J; Masseck OA J Vis Exp; 2020 Oct; (164):. PubMed ID: 33191936 [TBL] [Abstract][Full Text] [Related]
16. Applying Multichannel Optogenetic System for Epidural Spinal Cord Stimulation in Rats. Chang SY; Naganuma K; Kanazawa H; Sekino M; Onodera H; Kuniyoshi Y Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():1440-1443. PubMed ID: 30440663 [TBL] [Abstract][Full Text] [Related]
17. Soft subdermal implant capable of wireless battery charging and programmable controls for applications in optogenetics. Kim CY; Ku MJ; Qazi R; Nam HJ; Park JW; Nam KS; Oh S; Kang I; Jang JH; Kim WY; Kim JH; Jeong JW Nat Commun; 2021 Jan; 12(1):535. PubMed ID: 33483493 [TBL] [Abstract][Full Text] [Related]
18. Wireless, Battery-Free Implants for Electrochemical Catecholamine Sensing and Optogenetic Stimulation. Stuart T; Jeang WJ; Slivicki RA; Brown BJ; Burton A; Brings VE; Alarcón-Segovia LC; Agyare P; Ruiz S; Tyree A; Pruitt L; Madhvapathy S; Niemiec M; Zhuang J; Krishnan S; Copits BA; Rogers JA; Gereau RW; Samineni VK; Bandodkar AJ; Gutruf P ACS Nano; 2023 Jan; 17(1):561-574. PubMed ID: 36548126 [TBL] [Abstract][Full Text] [Related]
19. Implantation of Optoelectronic Devices in the Rodent Spinal Cord. Shalileh S; Moallemi A; Tsuyuki B; Simard AAP; Shahriari D J Vis Exp; 2024 Jul; (209):. PubMed ID: 39072649 [TBL] [Abstract][Full Text] [Related]
20. Miniaturized, Battery-Free Optofluidic Systems with Potential for Wireless Pharmacology and Optogenetics. Noh KN; Park SI; Qazi R; Zou Z; Mickle AD; Grajales-Reyes JG; Jang KI; Gereau RW; Xiao J; Rogers JA; Jeong JW Small; 2018 Jan; 14(4):. PubMed ID: 29215787 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]