BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 34032215)

  • 1. Detecting adaptive introgression in human evolution using convolutional neural networks.
    Gower G; Picazo PI; Fumagalli M; Racimo F
    Elife; 2021 May; 10():. PubMed ID: 34032215
    [TBL] [Abstract][Full Text] [Related]  

  • 2. VolcanoFinder: Genomic scans for adaptive introgression.
    Setter D; Mousset S; Cheng X; Nielsen R; DeGiorgio M; Hermisson J
    PLoS Genet; 2020 Jun; 16(6):e1008867. PubMed ID: 32555579
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An HMM-based comparative genomic framework for detecting introgression in eukaryotes.
    Liu KJ; Dai J; Truong K; Song Y; Kohn MH; Nakhleh L
    PLoS Comput Biol; 2014 Jun; 10(6):e1003649. PubMed ID: 24922281
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Signatures of Archaic Adaptive Introgression in Present-Day Human Populations.
    Racimo F; Marnetto D; Huerta-Sánchez E
    Mol Biol Evol; 2017 Feb; 34(2):296-317. PubMed ID: 27756828
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detection and Classification of Hard and Soft Sweeps from Unphased Genotypes by Multilocus Genotype Identity.
    Harris AM; Garud NR; DeGiorgio M
    Genetics; 2018 Dec; 210(4):1429-1452. PubMed ID: 30315068
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On convolutional neural networks for selection inference: Revealing the effect of preprocessing on model learning and the capacity to discover novel patterns.
    Cecil RM; Sugden LA
    PLoS Comput Biol; 2023 Nov; 19(11):e1010979. PubMed ID: 38011281
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Impact of Recessive Deleterious Variation on Signals of Adaptive Introgression in Human Populations.
    Zhang X; Kim B; Lohmueller KE; Huerta-Sánchez E
    Genetics; 2020 Jul; 215(3):799-812. PubMed ID: 32487519
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MaLAdapt Reveals Novel Targets of Adaptive Introgression From Neanderthals and Denisovans in Worldwide Human Populations.
    Zhang X; Kim B; Singh A; Sankararaman S; Durvasula A; Lohmueller KE
    Mol Biol Evol; 2023 Jan; 40(1):. PubMed ID: 36617238
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ImaGene: a convolutional neural network to quantify natural selection from genomic data.
    Torada L; Lorenzon L; Beddis A; Isildak U; Pattini L; Mathieson S; Fumagalli M
    BMC Bioinformatics; 2019 Nov; 20(Suppl 9):337. PubMed ID: 31757205
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome patterns of selection and introgression of haplotypes in natural populations of the house mouse (Mus musculus).
    Staubach F; Lorenc A; Messer PW; Tang K; Petrov DA; Tautz D
    PLoS Genet; 2012; 8(8):e1002891. PubMed ID: 22956910
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distinguishing between recent balancing selection and incomplete sweep using deep neural networks.
    Isildak U; Stella A; Fumagalli M
    Mol Ecol Resour; 2021 Nov; 21(8):2706-2718. PubMed ID: 33749134
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Disentangling Immediate Adaptive Introgression from Selection on Standing Introgressed Variation in Humans.
    Jagoda E; Lawson DJ; Wall JD; Lambert D; Muller C; Westaway M; Leavesley M; Capellini TD; Mirazón Lahr M; Gerbault P; Thomas MG; Migliano AB; Willerslev E; Metspalu M; Pagani L
    Mol Biol Evol; 2018 Mar; 35(3):623-630. PubMed ID: 29220488
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polygenic Patterns of Adaptive Introgression in Modern Humans Are Mainly Shaped by Response to Pathogens.
    Gouy A; Excoffier L
    Mol Biol Evol; 2020 May; 37(5):1420-1433. PubMed ID: 31935281
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adaptive introgression in animals: examples and comparison to new mutation and standing variation as sources of adaptive variation.
    Hedrick PW
    Mol Ecol; 2013 Sep; 22(18):4606-18. PubMed ID: 23906376
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Semi-supervised learning for automatic segmentation of the knee from MRI with convolutional neural networks.
    Burton W; Myers C; Rullkoetter P
    Comput Methods Programs Biomed; 2020 Jun; 189():105328. PubMed ID: 31958580
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Unreasonable Effectiveness of Convolutional Neural Networks in Population Genetic Inference.
    Flagel L; Brandvain Y; Schrider DR
    Mol Biol Evol; 2019 Feb; 36(2):220-238. PubMed ID: 30517664
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Supervised machine learning reveals introgressed loci in the genomes of Drosophila simulans and D. sechellia.
    Schrider DR; Ayroles J; Matute DR; Kern AD
    PLoS Genet; 2018 Apr; 14(4):e1007341. PubMed ID: 29684059
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interpreting generative adversarial networks to infer natural selection from genetic data.
    Riley R; Mathieson I; Mathieson S
    Genetics; 2024 Apr; 226(4):. PubMed ID: 38386895
    [TBL] [Abstract][Full Text] [Related]  

  • 19. IntroUNET: identifying introgressed alleles via semantic segmentation.
    Ray DD; Flagel L; Schrider DR
    bioRxiv; 2024 Jan; ():. PubMed ID: 36865105
    [TBL] [Abstract][Full Text] [Related]  

  • 20. IntroUNET: Identifying introgressed alleles via semantic segmentation.
    Ray DD; Flagel L; Schrider DR
    PLoS Genet; 2024 Feb; 20(2):e1010657. PubMed ID: 38377104
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.