BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 34032352)

  • 1. Delineating the Smith-Kingsmore syndrome phenotype: Investigation of 16 patients with the MTOR c.5395G > A p.(Glu1799Lys) missense variant.
    Poole RL; Curry PDK; Marcinkute R; Brewer C; Coman D; Hobson E; Johnson D; Lynch SA; Saggar A; Searle C; Scurr I; Turnpenny PD; Vasudevan P; Tatton-Brown K
    Am J Med Genet A; 2021 Aug; 185(8):2445-2454. PubMed ID: 34032352
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Smith-Kingsmore syndrome caused by MTOR gene variation: 2 cases and literature review].
    Lei HH; Liu LL; Wang XL; Tie XC; Tian N; Ji Y; Yang Y
    Zhonghua Er Ke Za Zhi; 2022 Sep; 60(9):935-939. PubMed ID: 36038305
    [No Abstract]   [Full Text] [Related]  

  • 3. Smith-Kingsmore syndrome: A third family with the MTOR mutation c.5395G>A p.(Glu1799Lys) and evidence for paternal gonadal mosaicism.
    Moosa S; Böhrer-Rabel H; Altmüller J; Beleggia F; Nürnberg P; Li Y; Yigit G; Wollnik B
    Am J Med Genet A; 2017 Jan; 173(1):264-267. PubMed ID: 27753196
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional and structural analyses of novel Smith-Kingsmore Syndrome-Associated MTOR variants reveal potential new mechanisms and predictors of pathogenicity.
    Besterman AD; Althoff T; Elfferich P; Gutierrez-Mejia I; Sadik J; Bernstein JA; van Ierland Y; Kattentidt-Mouravieva AA; Nellist M; Abramson J; Martinez-Agosto JA
    PLoS Genet; 2021 Jul; 17(7):e1009651. PubMed ID: 34197453
    [TBL] [Abstract][Full Text] [Related]  

  • 5. mTOR mutations in Smith-Kingsmore syndrome: Four additional patients and a review.
    Gordo G; Tenorio J; Arias P; Santos-Simarro F; García-Miñaur S; Moreno JC; Nevado J; Vallespin E; Rodriguez-Laguna L; de Mena R; Dapia I; Palomares-Bralo M; Del Pozo Á; Ibañez K; Silla JC; Barroso E; Ruiz-Pérez VL; Martinez-Glez V; Lapunzina P
    Clin Genet; 2018 Apr; 93(4):762-775. PubMed ID: 28892148
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel de novo MTOR gain-of-function variant in a patient with Smith-Kingsmore syndrome and Antiphospholipid syndrome.
    Rodríguez-García ME; Cotrina-Vinagre FJ; Bellusci M; Martínez de Aragón A; Hernández-Sánchez L; Carnicero-Rodríguez P; Martín-Hernández E; Martínez-Azorín F
    Eur J Hum Genet; 2019 Sep; 27(9):1369-1378. PubMed ID: 31053780
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Germline activating MTOR mutation arising through gonadal mosaicism in two brothers with megalencephaly and neurodevelopmental abnormalities.
    Mroske C; Rasmussen K; Shinde DN; Huether R; Powis Z; Lu HM; Baxter RM; McPherson E; Tang S
    BMC Med Genet; 2015 Nov; 16():102. PubMed ID: 26542245
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recurrent mosaic MTOR c.5930C > T (p.Thr1977Ile) variant causing megalencephaly, asymmetric polymicrogyria, and cutaneous pigmentary mosaicism: Case report and review of the literature.
    Handoko M; Emrick LT; Rosenfeld JA; Wang X; Tran AA; Turner A; Belmont JW; ; Lee BH; Bacino CA; Chao HT
    Am J Med Genet A; 2019 Mar; 179(3):475-479. PubMed ID: 30569621
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new case of Smith-Kingsmore syndrome with somatic MTOR pathogenic variant expands the phenotypic spectrum to lateralized overgrowth.
    Carli D; Ferrero GB; Fusillo A; Coppo P; La Selva R; Zinali F; Cardaropoli S; Ranieri C; Iacoviello M; Resta N; Mussa A
    Clin Genet; 2021 May; 99(5):719-723. PubMed ID: 33506498
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Association of MTOR Mutations With Developmental Brain Disorders, Including Megalencephaly, Focal Cortical Dysplasia, and Pigmentary Mosaicism.
    Mirzaa GM; Campbell CD; Solovieff N; Goold C; Jansen LA; Menon S; Timms AE; Conti V; Biag JD; Adams C; Boyle EA; Collins S; Ishak G; Poliachik S; Girisha KM; Yeung KS; Chung BHY; Rahikkala E; Gunter SA; McDaniel SS; Macmurdo CF; Bernstein JA; Martin B; Leary R; Mahan S; Liu S; Weaver M; Doerschner M; Jhangiani S; Muzny DM; Boerwinkle E; Gibbs RA; Lupski JR; Shendure J; Saneto RP; Novotny EJ; Wilson CJ; Sellers WR; Morrissey M; Hevner RF; Ojemann JG; Guerrini R; Murphy LO; Winckler W; Dobyns WB
    JAMA Neurol; 2016 Jul; 73(7):836-845. PubMed ID: 27159400
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two novel cases expanding the phenotype of SETD2-related overgrowth syndrome.
    van Rij MC; Hollink IHIM; Terhal PA; Kant SG; Ruivenkamp C; van Haeringen A; Kievit JA; van Belzen MJ
    Am J Med Genet A; 2018 May; 176(5):1212-1215. PubMed ID: 29681085
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Semaglutide as a potential treatment for obesity in Smith-Kingsmore syndrome (SKS) patients: A mosaic mutation case report.
    Bonnet JB; Durieux AT; Tournayre S; Marty L; Sultan A; Avignon A
    Obes Res Clin Pract; 2024; 18(2):159-162. PubMed ID: 38582735
    [TBL] [Abstract][Full Text] [Related]  

  • 13. De novo missense variants in PPP2R5D are associated with intellectual disability, macrocephaly, hypotonia, and autism.
    Shang L; Henderson LB; Cho MT; Petrey DS; Fong CT; Haude KM; Shur N; Lundberg J; Hauser N; Carmichael J; Innis J; Schuette J; Wu YW; Asaikar S; Pearson M; Folk L; Retterer K; Monaghan KG; Chung WK
    Neurogenetics; 2016 Jan; 17(1):43-9. PubMed ID: 26576547
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel HIST1HE pathogenic variant in a girl with macrocephaly and intellectual disability: a new case and review of literature.
    Pelle A; Pezzoli L; Apuril E; Iascone M; Selicorni A
    Clin Dysmorphol; 2021 Jan; 30(1):39-43. PubMed ID: 33086257
    [TBL] [Abstract][Full Text] [Related]  

  • 15. De novo nonsense and frameshift variants of TCF20 in individuals with intellectual disability and postnatal overgrowth.
    Schäfgen J; Cremer K; Becker J; Wieland T; Zink AM; Kim S; Windheuser IC; Kreiß M; Aretz S; Strom TM; Wieczorek D; Engels H
    Eur J Hum Genet; 2016 Dec; 24(12):1739-1745. PubMed ID: 27436265
    [TBL] [Abstract][Full Text] [Related]  

  • 16.
    Kato K; Miya F; Hamada N; Negishi Y; Narumi-Kishimoto Y; Ozawa H; Ito H; Hori I; Hattori A; Okamoto N; Kato M; Tsunoda T; Kanemura Y; Kosaki K; Takahashi Y; Nagata KI; Saitoh S
    J Med Genet; 2019 Jun; 56(6):388-395. PubMed ID: 30573562
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Midline non-ictal rhythmic waveforms as possible electroencephalographic biomarkers of Smith-Klingsmore syndrome in children.
    Simonelli V; Ferrari AR; Battini R; Brovedani P; Bartolini E
    Clin Neurophysiol Pract; 2024; 9():102-105. PubMed ID: 38495955
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A combination of genetic and biochemical analyses for the diagnosis of PI3K-AKT-mTOR pathway-associated megalencephaly.
    Negishi Y; Miya F; Hattori A; Johmura Y; Nakagawa M; Ando N; Hori I; Togawa T; Aoyama K; Ohashi K; Fukumura S; Mizuno S; Umemura A; Kishimoto Y; Okamoto N; Kato M; Tsunoda T; Yamasaki M; Kanemura Y; Kosaki K; Nakanishi M; Saitoh S
    BMC Med Genet; 2017 Jan; 18(1):4. PubMed ID: 28086757
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A disorder-related variant (E420K) of a PP2A-regulatory subunit (PPP2R5D) causes constitutively active AKT-mTOR signaling and uncoordinated cell growth.
    Papke CM; Smolen KA; Swingle MR; Cressey L; Heng RA; Toporsian M; Deng L; Hagen J; Shen Y; Chung WK; Kettenbach AN; Honkanen RE
    J Biol Chem; 2021; 296():100313. PubMed ID: 33482199
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mutations in
    Woodbury-Smith M; Deneault E; Yuen RKC; Walker S; Zarrei M; Pellecchia G; Howe JL; Hoang N; Uddin M; Marshall CR; Chrysler C; Thompson A; Szatmari P; Scherer SW
    Mol Autism; 2017; 8():59. PubMed ID: 29152164
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.