BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 34032409)

  • 1. The Fenton Reaction in Water Assisted by Picolinic Acid: Accelerated Iron Cycling and Co-generation of a Selective Fe-Based Oxidant.
    Yang Z; Shan C; Pan B; Pignatello JJ
    Environ Sci Technol; 2021 Jun; 55(12):8299-8308. PubMed ID: 34032409
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mn(II) Acceleration of the Picolinic Acid-Assisted Fenton Reaction: New Insight into the Role of Manganese in Homogeneous Fenton AOPs.
    Yang Z; Shan C; Pignatello JJ; Pan B
    Environ Sci Technol; 2022 May; 56(10):6621-6630. PubMed ID: 35502893
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced Degradation of Micropollutants in a Peracetic Acid-Fe(III) System with Picolinic Acid.
    Kim J; Wang J; Ashley DC; Sharma VK; Huang CH
    Environ Sci Technol; 2022 Apr; 56(7):4437-4446. PubMed ID: 35319885
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Iron-catalyzed oxidation of arsenic(III) by oxygen and by hydrogen peroxide: pH-dependent formation of oxidants in the Fenton reaction.
    Hug SJ; Leupin O
    Environ Sci Technol; 2003 Jun; 37(12):2734-42. PubMed ID: 12854713
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioinspired Nonheme Iron Catalysts for C-H and C═C Bond Oxidation: Insights into the Nature of the Metal-Based Oxidants.
    Oloo WN; Que L
    Acc Chem Res; 2015 Sep; 48(9):2612-21. PubMed ID: 26280131
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydroxylamine driven advanced oxidation processes for water treatment: A review.
    Duan J; Pang SY; Wang Z; Zhou Y; Gao Y; Li J; Guo Q; Jiang J
    Chemosphere; 2021 Jan; 262():128390. PubMed ID: 33182154
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ferryl Ion in the Photo-Fenton Process at Acidic pH: Occurrence, Fate, and Implications.
    Deng G; Wang Z; Ma J; Jiang J; He D; Li X; Szczuka A; Zhang Z
    Environ Sci Technol; 2023 Nov; 57(47):18586-18596. PubMed ID: 36912755
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Peroxymonosulfate Activation by Fe(III)-Picolinate Complexes for Efficient Water Treatment at Circumneutral pH: Fe(III)/Fe(IV) Cycle and Generation of Oxyl Radicals.
    Yang Z; Cui Y; Pan B; Pignatello JJ
    Environ Sci Technol; 2023 Nov; 57(47):18918-18928. PubMed ID: 37061925
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Degradation of 2, 2', 4, 4'-Tetrabrominated diphenyl ether (BDE-47) via the Fenton reaction driven by the dissimilatory metal-reducing bacterium Shewanella oneidensis MR-1.
    Peng Z; Shi M; Xia K; Dong Y; Shi L
    Environ Pollut; 2020 Nov; 266(Pt 1):115413. PubMed ID: 32828026
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxidation of sulfoxides and arsenic(III) in corrosion of nanoscale zero valent iron by oxygen: evidence against ferryl ions (Fe(IV)) as active intermediates in Fenton reaction.
    Pang SY; Jiang J; Ma J
    Environ Sci Technol; 2011 Jan; 45(1):307-12. PubMed ID: 21133375
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The ferryl generation by fenton reaction driven by catechol.
    Benítez FJ; Melín V; Perez-Gonzalez G; Henríquez A; Zarate X; Schott E; Contreras D
    Chemosphere; 2023 Sep; 335():139155. PubMed ID: 37290511
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Introducing saccharic acid as an efficient iron chelate to enhance photo-Fenton degradation of organic contaminants.
    Subramanian G; Madras G
    Water Res; 2016 Nov; 104():168-177. PubMed ID: 27522633
    [TBL] [Abstract][Full Text] [Related]  

  • 13. pH Dependence of Hydroxyl Radical, Ferryl, and/or Ferric Peroxo Species Generation in the Heterogeneous Fenton Process.
    Chen Y; Miller CJ; Waite TD
    Environ Sci Technol; 2022 Jan; 56(2):1278-1288. PubMed ID: 34965094
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced Fe(III)-mediated Fenton oxidation of atrazine in the presence of functionalized multi-walled carbon nanotubes.
    Yang Z; Yu A; Shan C; Gao G; Pan B
    Water Res; 2018 Jun; 137():37-46. PubMed ID: 29525426
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Graphene oxide mediated Fe(III) reduction for enhancing Fe(III)/H
    Cheng F; Zhou P; Liu Y; Huo X; Zhang J; Yuan Y; Zhang H; Lai B; Zhang Y
    Sci Total Environ; 2021 Nov; 797():149097. PubMed ID: 34298366
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quinolinic acid-iron(ii) complexes: slow autoxidation, but enhanced hydroxyl radical production in the Fenton reaction.
    Pláteník J; Stopka P; Vejrazka M; Stípek S
    Free Radic Res; 2001 May; 34(5):445-59. PubMed ID: 11378528
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new insight into Fenton and Fenton-like processes for water treatment: Part II. Influence of organic compounds on Fe(III)/Fe(II) interconversion and the course of reactions.
    Jiang C; Gao Z; Qu H; Li J; Wang X; Li P; Liu H
    J Hazard Mater; 2013 Apr; 250-251():76-81. PubMed ID: 23434482
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced degradation of tetracycline over FeS-based Fenton-like process: Autocatalytic decomposition of H
    Cai Y; Fan J; Liu Z
    J Hazard Mater; 2022 Aug; 436():129092. PubMed ID: 35596995
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of iron ion on doxycycline photocatalytic and Fenton-based autocatatalytic decomposition.
    Bolobajev J; Trapido M; Goi A
    Chemosphere; 2016 Jun; 153():220-6. PubMed ID: 27016818
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strong enhancement on fenton oxidation by addition of hydroxylamine to accelerate the ferric and ferrous iron cycles.
    Chen L; Ma J; Li X; Zhang J; Fang J; Guan Y; Xie P
    Environ Sci Technol; 2011 May; 45(9):3925-30. PubMed ID: 21469678
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.