These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

386 related articles for article (PubMed ID: 34032440)

  • 1. Multiscale Quantum Refinement Approaches for Metalloproteins.
    Yan Z; Li X; Chung LW
    J Chem Theory Comput; 2021 Jun; 17(6):3783-3796. PubMed ID: 34032440
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-throughput quantum-mechanics/molecular-mechanics (ONIOM) macromolecular crystallographic refinement with PHENIX/DivCon: the impact of mixed Hamiltonian methods on ligand and protein structure.
    Borbulevych O; Martin RI; Westerhoff LM
    Acta Crystallogr D Struct Biol; 2018 Nov; 74(Pt 11):1063-1077. PubMed ID: 30387765
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ONIOM calculation on azurin: effect of metal ion substitutions.
    Rajapandian V; Hakkim V; Subramanian V
    J Phys Chem A; 2009 Jul; 113(30):8615-25. PubMed ID: 19572691
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solution NMR refinement of a metal ion bound protein using metal ion inclusive restrained molecular dynamics methods.
    Chakravorty DK; Wang B; Lee CW; Guerra AJ; Giedroc DP; Merz KM
    J Biomol NMR; 2013 Jun; 56(2):125-37. PubMed ID: 23609042
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The critical role of QM/MM X-ray refinement and accurate tautomer/protomer determination in structure-based drug design.
    Borbulevych OY; Martin RI; Westerhoff LM
    J Comput Aided Mol Des; 2021 Apr; 35(4):433-451. PubMed ID: 33108589
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accurate metal-site structures in proteins obtained by combining experimental data and quantum chemistry.
    Ryde U
    Dalton Trans; 2007 Feb; (6):607-25. PubMed ID: 17268593
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Active site structures and the redox properties of blue copper proteins: atomic resolution structure of azurin II and electronic structure calculations of azurin, plastocyanin and stellacyanin.
    Paraskevopoulos K; Sundararajan M; Surendran R; Hough MA; Eady RR; Hillier IH; Hasnain SS
    Dalton Trans; 2006 Jul; (25):3067-76. PubMed ID: 16786065
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combined quantum and molecular mechanics calculations on metalloproteins.
    Ryde U
    Curr Opin Chem Biol; 2003 Feb; 7(1):136-42. PubMed ID: 12547438
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantum effects in cation interactions with first and second coordination shell ligands in metalloproteins.
    Ngo V; da Silva MC; Kubillus M; Li H; Roux B; Elstner M; Cui Q; Salahub DR; Noskov SY
    J Chem Theory Comput; 2015 Oct; 11(10):4992-5001. PubMed ID: 26574284
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Review on the QM/MM Methodologies and Their Application to Metalloproteins.
    Tzeliou CE; Mermigki MA; Tzeli D
    Molecules; 2022 Apr; 27(9):. PubMed ID: 35566011
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Complexes of a Zn-metalloenzyme binding site with hydroxamate-containing ligands. A case for detailed benchmarkings of polarizable molecular mechanics/dynamics potentials when the experimental binding structure is unknown.
    Gresh N; Perahia D; de Courcy B; Foret J; Roux C; El-Khoury L; Piquemal JP; Salmon L
    J Comput Chem; 2016 Dec; 37(32):2770-2782. PubMed ID: 27699809
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Machine Learning-Enhanced Quantum Chemistry-Assisted Refinement of the Active Site Structure of Metalloproteins.
    Gigli L; Silva JM; Cerofolini L; Macedo AL; Geraldes CFGC; Suturina EA; Calderone V; Fragai M; Parigi G; Ravera E; Luchinat C
    Inorg Chem; 2024 Jun; 63(23):10713-10725. PubMed ID: 38805564
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Use of QM/DMD as a Multiscale Approach to Modeling Metalloenzymes.
    Gallup NM; Alexandrova AN
    Methods Enzymol; 2016; 577():319-39. PubMed ID: 27498643
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational modelling of supramolecular metallopeptide assemblies.
    Martín LR; Santiago LR; Korendovych IV; Sodupe M; Maréchal JD
    Methods Enzymol; 2024; 697():211-245. PubMed ID: 38816124
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extension of QM/MM docking and its applications to metalloproteins.
    Cho AE; Rinaldo D
    J Comput Chem; 2009 Dec; 30(16):2609-16. PubMed ID: 19373896
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantum refinement of protein structures: implementation and application to the red fluorescent protein DsRed.M1.
    Hsiao YW; Sanchez-Garcia E; Doerr M; Thiel W
    J Phys Chem B; 2010 Nov; 114(46):15413-23. PubMed ID: 20977248
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Converged Structural and Spectroscopic Properties for Refined QM/MM Models of Azurin.
    Schulz CE; van Gastel M; Pantazis DA; Neese F
    Inorg Chem; 2021 May; 60(10):7399-7412. PubMed ID: 33939922
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accelerating reliable multiscale quantum refinement of protein-drug systems enabled by machine learning.
    Yan Z; Wei D; Li X; Chung LW
    Nat Commun; 2024 May; 15(1):4181. PubMed ID: 38755151
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiscale Workflow for Modeling Ligand Complexes of Zinc Metalloproteins.
    Yang Z; Twidale RM; Gervasoni S; Suardíaz R; Colenso CK; Lang EJM; Spencer J; Mulholland AJ
    J Chem Inf Model; 2021 Nov; 61(11):5658-5672. PubMed ID: 34748329
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational approaches for
    Akcapinar GB; Sezerman OU
    Biosci Rep; 2017 Apr; 37(2):. PubMed ID: 28167677
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.