These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
175 related articles for article (PubMed ID: 34032982)
1. Modeling of sustained spontaneous network oscillations of a sexually dimorphic brainstem nucleus: the role of potassium equilibrium potential. Hartman D; Lehotzky D; Ilieş I; Levi M; Zupanc GKH J Comput Neurosci; 2021 Nov; 49(4):419-439. PubMed ID: 34032982 [TBL] [Abstract][Full Text] [Related]
2. Development of a sexual dimorphism in a central pattern generator driving a rhythmic behavior: The role of glia-mediated potassium buffering in the pacemaker nucleus of the weakly electric fish Apteronotus leptorhynchus. Zupanc GKH Dev Neurobiol; 2020 Jan; 80(1-2):6-15. PubMed ID: 32090501 [TBL] [Abstract][Full Text] [Related]
3. Glia-mediated modulation of extracellular potassium concentration determines the sexually dimorphic output frequency of a model brainstem oscillator. Zupanc GKH; Amaro SM; Lehotzky D; Zupanc FB; Leung NY J Theor Biol; 2019 Jun; 471():117-124. PubMed ID: 30902592 [TBL] [Abstract][Full Text] [Related]
4. Computational modeling predicts regulation of central pattern generator oscillations by size and density of the underlying heterogenous network. Ilieş I; Zupanc GKH J Comput Neurosci; 2023 Feb; 51(1):87-105. PubMed ID: 36201129 [TBL] [Abstract][Full Text] [Related]
5. Dynamic Neuron-Glia Interactions in an Oscillatory Network Controlling Behavioral Plasticity in the Weakly Electric Fish, Zupanc GKH Front Physiol; 2017; 8():1087. PubMed ID: 29311998 [TBL] [Abstract][Full Text] [Related]
6. Large-scale identification of proteins involved in the development of a sexually dimorphic behavior. Zupanc GK; Ilies I; Sîrbulescu RF; Zupanc MM J Neurophysiol; 2014 Apr; 111(8):1646-54. PubMed ID: 24478160 [TBL] [Abstract][Full Text] [Related]
7. Precision of the pacemaker nucleus in a weakly electric fish: network versus cellular influences. Moortgat KT; Bullock TH; Sejnowski TJ J Neurophysiol; 2000 Feb; 83(2):971-83. PubMed ID: 10669509 [TBL] [Abstract][Full Text] [Related]
8. Ionic currents that contribute to a sexually dimorphic communication signal in weakly electric fish. Smith GT J Comp Physiol A; 1999 Oct; 185(4):379-87. PubMed ID: 10555272 [TBL] [Abstract][Full Text] [Related]
9. Pharmacological characterization of ionic currents that regulate the pacemaker rhythm in a weakly electric fish. Smith GT; Zakon HH J Neurobiol; 2000 Feb; 42(2):270-86. PubMed ID: 10640333 [TBL] [Abstract][Full Text] [Related]
10. Ionic and synaptic mechanisms underlying a brainstem oscillator: an in vitro study of the pacemaker nucleus of Apteronotus. Dye J J Comp Physiol A; 1991 May; 168(5):521-32. PubMed ID: 1681093 [TBL] [Abstract][Full Text] [Related]
11. Distribution of Kv1-like potassium channels in the electromotor and electrosensory systems of the weakly electric fish Apteronotus leptorhynchus. Smith GT; Unguez GA; Weber CM J Neurobiol; 2006 Aug; 66(9):1011-31. PubMed ID: 16779822 [TBL] [Abstract][Full Text] [Related]
12. Pharmacological characterization of ionic currents that regulate high-frequency spontaneous activity of electromotor neurons in the weakly electric fish, Apteronotus leptorhynchus. Smith GT J Neurobiol; 2006 Jan; 66(1):1-18. PubMed ID: 16187302 [TBL] [Abstract][Full Text] [Related]
13. Gap junction effects on precision and frequency of a model pacemaker network. Moortgat KT; Bullock TH; Sejnowski TJ J Neurophysiol; 2000 Feb; 83(2):984-97. PubMed ID: 10669510 [TBL] [Abstract][Full Text] [Related]
14. Genes linked to species diversity in a sexually dimorphic communication signal in electric fish. Smith GT; Proffitt MR; Smith AR; Rusch DB J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2018 Jan; 204(1):93-112. PubMed ID: 29058069 [TBL] [Abstract][Full Text] [Related]
15. Intracellular recording in the medullary pacemaker nucleus of the weakly electric fish, Apteronotus, during modulatory behaviors. Dye J; Heiligenberg W J Comp Physiol A; 1987 Aug; 161(2):187-200. PubMed ID: 3625572 [TBL] [Abstract][Full Text] [Related]
16. Model of gamma frequency burst discharge generated by conditional backpropagation. Doiron B; Longtin A; Turner RW; Maler L J Neurophysiol; 2001 Oct; 86(4):1523-45. PubMed ID: 11600618 [TBL] [Abstract][Full Text] [Related]
17. Voltage dependence of the Ca2+-activated K+ conductance of human red cell membranes is strongly dependent on the extracellular K+ concentration. Vestergaard-Bogind B; Stampe P; Christophersen P J Membr Biol; 1987; 95(2):121-30. PubMed ID: 3573031 [TBL] [Abstract][Full Text] [Related]
18. A balance of outward and linear inward ionic currents is required for generation of slow-wave oscillations. Golowasch J; Bose A; Guan Y; Salloum D; Roeser A; Nadim F J Neurophysiol; 2017 Aug; 118(2):1092-1104. PubMed ID: 28539398 [TBL] [Abstract][Full Text] [Related]
19. Androgen modulates the kinetics of the delayed rectifying K+ current in the electric organ of a weakly electric fish. McAnelly ML; Zakon HH Dev Neurobiol; 2007 Oct; 67(12):1589-97. PubMed ID: 17562532 [TBL] [Abstract][Full Text] [Related]
20. Synaptology of the medullary command (pacemaker) nucleus of the weakly electric fish (Apteronotus leptorhynchus) with particular reference to comparative aspects. Elekes K; Szabo T Exp Brain Res; 1985; 60(3):509-20. PubMed ID: 4076373 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]