BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 34033108)

  • 1. Transcription Factor-Binding Site Identification and Enrichment Analysis.
    Guy JL; Mor GG
    Methods Mol Biol; 2021; 2255():241-261. PubMed ID: 34033108
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CiiiDER: A tool for predicting and analysing transcription factor binding sites.
    Gearing LJ; Cumming HE; Chapman R; Finkel AM; Woodhouse IB; Luu K; Gould JA; Forster SC; Hertzog PJ
    PLoS One; 2019; 14(9):e0215495. PubMed ID: 31483836
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A computational approach to identify cellular heterogeneity and tissue-specific gene regulatory networks.
    Jambusaria A; Klomp J; Hong Z; Rafii S; Dai Y; Malik AB; Rehman J
    BMC Bioinformatics; 2018 Jun; 19(1):217. PubMed ID: 29940845
    [TBL] [Abstract][Full Text] [Related]  

  • 4. TF2Network: predicting transcription factor regulators and gene regulatory networks in Arabidopsis using publicly available binding site information.
    Kulkarni SR; Vaneechoutte D; Van de Velde J; Vandepoele K
    Nucleic Acids Res; 2018 Apr; 46(6):e31. PubMed ID: 29272447
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting Transcription Factor Binding Sites and Their Cognate Transcription Factors Using Gene Expression Data.
    Yu CP; Li WH
    Methods Mol Biol; 2017; 1629():271-282. PubMed ID: 28623591
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computer-assisted identification of cell cycle-related genes: new targets for E2F transcription factors.
    Kel AE; Kel-Margoulis OV; Farnham PJ; Bartley SM; Wingender E; Zhang MQ
    J Mol Biol; 2001 May; 309(1):99-120. PubMed ID: 11491305
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting distinct organization of transcription factor binding sites on the promoter regions: a new genome-based approach to expand human embryonic stem cell regulatory network.
    Hosseinpour B; Bakhtiarizadeh MR; Khosravi P; Ebrahimie E
    Gene; 2013 Dec; 531(2):212-9. PubMed ID: 24042128
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational identification of transcriptional regulators in human endotoxemia.
    Nguyen TT; Foteinou PT; Calvano SE; Lowry SF; Androulakis IP
    PLoS One; 2011; 6(5):e18889. PubMed ID: 21637747
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ab initio identification of putative human transcription factor binding sites by comparative genomics.
    Corà D; Herrmann C; Dieterich C; Di Cunto F; Provero P; Caselle M
    BMC Bioinformatics; 2005 May; 6():110. PubMed ID: 15865625
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integrating transcriptional and protein interaction networks to prioritize condition-specific master regulators.
    Padi M; Quackenbush J
    BMC Syst Biol; 2015 Nov; 9():80. PubMed ID: 26576632
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MORA and EnsembleTFpredictor: An ensemble approach to reveal functional transcription factor regulatory networks.
    Boyer K; Li L; Li T; Zhang B; Zhao G
    PLoS One; 2023; 18(11):e0294724. PubMed ID: 38032891
    [TBL] [Abstract][Full Text] [Related]  

  • 12. From System-Wide Differential Gene Expression to Perturbed Regulatory Factors: A Combinatorial Approach.
    Mahajan G; Mande SC
    PLoS One; 2015; 10(11):e0142147. PubMed ID: 26562430
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioinformatic identification of candidate biomarkers and related transcription factors in nasopharyngeal carcinoma.
    Ye Z; Wang F; Yan F; Wang L; Li B; Liu T; Hu F; Jiang M; Li W; Fu Z
    World J Surg Oncol; 2019 Apr; 17(1):60. PubMed ID: 30935420
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sequence homology in eukaryotes (SHOE): interactive visual tool for promoter analysis.
    Polouliakh N; Horton P; Shibanai K; Takata K; Ludwig V; Ghosh S; Kitano H
    BMC Genomics; 2018 Sep; 19(1):715. PubMed ID: 30261835
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mathematical Programming for Modeling Expression of a Gene Using Gurobi Optimizer to Identify Its Transcriptional Regulators.
    Muley VY
    Methods Mol Biol; 2021; 2328():99-113. PubMed ID: 34251621
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioinformatics approaches to predict target genes from transcription factor binding data.
    Essebier A; Lamprecht M; Piper M; Bodén M
    Methods; 2017 Dec; 131():111-119. PubMed ID: 28890129
    [TBL] [Abstract][Full Text] [Related]  

  • 17. REGNET: mining context-specific human transcription networks using composite genomic information.
    Chi SM; Seo YK; Park YK; Yoon S; Park CY; Kim YS; Kim SY; Nam D
    BMC Genomics; 2014 Jun; 15(1):450. PubMed ID: 24912499
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integrated analyses to reconstruct microRNA-mediated regulatory networks in mouse liver using high-throughput profiling.
    Hsu SD; Huang HY; Chou CH; Sun YM; Hsu MT; Tsou AP
    BMC Genomics; 2015; 16 Suppl 2(Suppl 2):S12. PubMed ID: 25707768
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A systematic model to predict transcriptional regulatory mechanisms based on overrepresentation of transcription factor binding profiles.
    Chang LW; Nagarajan R; Magee JA; Milbrandt J; Stormo GD
    Genome Res; 2006 Mar; 16(3):405-13. PubMed ID: 16449500
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational inference of transcriptional regulatory networks from expression profiling and transcription factor binding site identification.
    Haverty PM; Hansen U; Weng Z
    Nucleic Acids Res; 2004; 32(1):179-88. PubMed ID: 14704355
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.