These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 34033544)

  • 1. MultiTrans: An Algorithm for Path Extraction Through Mixed Integer Linear Programming for Transcriptome Assembly.
    Zhao J; Feng H; Zhu D; Lin Y
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(1):48-56. PubMed ID: 34033544
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accurate inference of isoforms from multiple sample RNA-Seq data.
    Tasnim M; Ma S; Yang EW; Jiang T; Li W
    BMC Genomics; 2015; 16 Suppl 2(Suppl 2):S15. PubMed ID: 25708199
    [TBL] [Abstract][Full Text] [Related]  

  • 3. IsoTree: A New Framework for de novo Transcriptome Assembly from RNA-seq Reads.
    Zhao J; Feng H; Zhu D; Zhang C; Xu Y
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(3):938-948. PubMed ID: 29994455
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SSP: an interval integer linear programming for de novo transcriptome assembly and isoform discovery of RNA-seq reads.
    Safikhani Z; Sadeghi M; Pezeshk H; Eslahchi C
    Genomics; 2013; 102(5-6):507-14. PubMed ID: 24161398
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcriptome assembly and quantification from Ion Torrent RNA-Seq data.
    Mangul S; Caciula A; Al Seesi S; Brinza D; MÓ‘ndoiu I; Zelikovsky A
    BMC Genomics; 2014; 15 Suppl 5(Suppl 5):S7. PubMed ID: 25082147
    [TBL] [Abstract][Full Text] [Related]  

  • 6. TransRef enables accurate transcriptome assembly by redefining accurate neo-splicing graphs.
    Yu T; Han R; Fang Z; Mu Z; Zheng H; Liu J
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34254977
    [TBL] [Abstract][Full Text] [Related]  

  • 7. rnaSPAdes: a de novo transcriptome assembler and its application to RNA-Seq data.
    Bushmanova E; Antipov D; Lapidus A; Prjibelski AD
    Gigascience; 2019 Sep; 8(9):. PubMed ID: 31494669
    [TBL] [Abstract][Full Text] [Related]  

  • 8. TransLiG: a de novo transcriptome assembler that uses line graph iteration.
    Liu J; Yu T; Mu Z; Li G
    Genome Biol; 2019 Apr; 20(1):81. PubMed ID: 31014374
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A memory-efficient algorithm to obtain splicing graphs and de novo expression estimates from de Bruijn graphs of RNA-Seq data.
    Sze SH; Tarone AM
    BMC Genomics; 2014; 15 Suppl 5(Suppl 5):S6. PubMed ID: 25082000
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Freddie: annotation-independent detection and discovery of transcriptomic alternative splicing isoforms using long-read sequencing.
    Orabi B; Xie N; McConeghy B; Dong X; Chauve C; Hach F
    Nucleic Acids Res; 2023 Jan; 51(2):e11. PubMed ID: 36478271
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RefShannon: A genome-guided transcriptome assembler using sparse flow decomposition.
    Mao S; Pachter L; Tse D; Kannan S
    PLoS One; 2020; 15(6):e0232946. PubMed ID: 32484809
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identifying similar transcripts in a related organism from de Bruijn graphs of RNA-Seq data, with applications to the study of salt and waterlogging tolerance in Melilotus.
    Fu S; Chang PL; Friesen ML; Teakle NL; Tarone AM; Sze SH
    BMC Genomics; 2019 Jun; 20(Suppl 5):425. PubMed ID: 31167652
    [TBL] [Abstract][Full Text] [Related]  

  • 13. QuaPra: Efficient transcript assembly and quantification using quadratic programming with Apriori algorithm.
    Ji X; Tong W; Ning B; Mason CE; Kreil DP; Labaj PP; Chen G; Shi T
    Sci China Life Sci; 2019 Jul; 62(7):937-946. PubMed ID: 31124003
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparing de novo transcriptome assembly tools in di- and autotetraploid non-model plant species.
    Madritsch S; Burg A; Sehr EM
    BMC Bioinformatics; 2021 Mar; 22(1):146. PubMed ID: 33752598
    [TBL] [Abstract][Full Text] [Related]  

  • 15. TransComb: genome-guided transcriptome assembly via combing junctions in splicing graphs.
    Liu J; Yu T; Jiang T; Li G
    Genome Biol; 2016 Oct; 17(1):213. PubMed ID: 27760567
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ChopStitch: exon annotation and splice graph construction using transcriptome assembly and whole genome sequencing data.
    Khan H; Mohamadi H; Vandervalk BP; Warren RL; Chu J; Birol I
    Bioinformatics; 2018 May; 34(10):1697-1704. PubMed ID: 29300846
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extending rnaSPAdes functionality for hybrid transcriptome assembly.
    Prjibelski AD; Puglia GD; Antipov D; Bushmanova E; Giordano D; Mikheenko A; Vitale D; Lapidus A
    BMC Bioinformatics; 2020 Jul; 21(Suppl 12):302. PubMed ID: 32703149
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Bayesian approach for accurate de novo transcriptome assembly.
    Shi X; Wang X; Neuwald AF; Halakivi-Clarke L; Clarke R; Xuan J
    Sci Rep; 2021 Sep; 11(1):17663. PubMed ID: 34480063
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SAUTE: sequence assembly using target enrichment.
    Souvorov A; Agarwala R
    BMC Bioinformatics; 2021 Jul; 22(1):375. PubMed ID: 34289805
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient Minimum Flow Decomposition via Integer Linear Programming.
    Dias FHC; Williams L; Mumey B; Tomescu AI
    J Comput Biol; 2022 Nov; 29(11):1252-1267. PubMed ID: 36260412
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.