BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 34033713)

  • 1. A System-Wide Spatiotemporal Characterization of ErbB Receptor Complexes by Subcellular Fractionation Integrated Quantitative Mass Spectrometry.
    Wang S; Zhang C; Li M; Zhao C; Zheng Y
    Anal Chem; 2021 Jun; 93(22):7933-7941. PubMed ID: 34033713
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proteomics methods for subcellular proteome analysis.
    Drissi R; Dubois ML; Boisvert FM
    FEBS J; 2013 Nov; 280(22):5626-34. PubMed ID: 24034475
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Approaches to Characterize Organelle, Compartment, or Structure Purity.
    Mueller SJ; Hoernstein SN; Reski R
    Methods Mol Biol; 2017; 1511():13-28. PubMed ID: 27730599
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Subcellular fractionation enhances proteome coverage of pancreatic duct cells.
    Paulo JA; Gaun A; Kadiyala V; Ghoulidi A; Banks PA; Conwell DL; Steen H
    Biochim Biophys Acta; 2013 Apr; 1834(4):791-7. PubMed ID: 23352835
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of endosomal epidermal growth factor receptor signaling targets by functional organelle proteomics.
    Stasyk T; Schiefermeier N; Skvortsov S; Zwierzina H; Peränen J; Bonn GK; Huber LA
    Mol Cell Proteomics; 2007 May; 6(5):908-22. PubMed ID: 17293594
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatial-proteomics reveals phospho-signaling dynamics at subcellular resolution.
    Martinez-Val A; Bekker-Jensen DB; Steigerwald S; Koenig C; Østergaard O; Mehta A; Tran T; Sikorski K; Torres-Vega E; Kwasniewicz E; Brynjólfsdóttir SH; Frankel LB; Kjøbsted R; Krogh N; Lundby A; Bekker-Jensen S; Lund-Johansen F; Olsen JV
    Nat Commun; 2021 Dec; 12(1):7113. PubMed ID: 34876567
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Organelle proteomics: implications for subcellular fractionation in proteomics.
    Huber LA; Pfaller K; Vietor I
    Circ Res; 2003 May; 92(9):962-8. PubMed ID: 12750306
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of proteomic marker ensembles to subcellular organelle identification.
    Andreyev AY; Shen Z; Guan Z; Ryan A; Fahy E; Subramaniam S; Raetz CR; Briggs S; Dennis EA
    Mol Cell Proteomics; 2010 Feb; 9(2):388-402. PubMed ID: 19884172
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tissue subcellular fractionation and protein extraction for use in mass-spectrometry-based proteomics.
    Cox B; Emili A
    Nat Protoc; 2006; 1(4):1872-8. PubMed ID: 17487171
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Establishment of subcellular fractionation techniques to monitor the intracellular fate of polymer therapeutics I. Differential centrifugation fractionation B16F10 cells and use to study the intracellular fate of HPMA copolymer - doxorubicin.
    Seib FP; Jones AT; Duncan R
    J Drug Target; 2006 Jul; 14(6):375-90. PubMed ID: 17092838
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Method to Estimate the Distribution of Proteins across Multiple Compartments Using Data from Quantitative Proteomics Subcellular Fractionation Experiments.
    Moore DF; Sleat DE; Lobel P
    J Proteome Res; 2022 Jun; 21(6):1371-1381. PubMed ID: 35522998
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatiotemporal profiling of cytosolic signaling complexes in living cells by selective proximity proteomics.
    Ke M; Yuan X; He A; Yu P; Chen W; Shi Y; Hunter T; Zou P; Tian R
    Nat Commun; 2021 Jan; 12(1):71. PubMed ID: 33397984
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic Organellar Maps for Spatial Proteomics.
    Itzhak DN; Schessner JP; Borner GHH
    Curr Protoc Cell Biol; 2019 Jun; 83(1):e81. PubMed ID: 30489039
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative proteomic analysis to profile dynamic changes in the spatial distribution of cellular proteins.
    Yan W; Hwang D; Aebersold R
    Methods Mol Biol; 2008; 432():389-401. PubMed ID: 18370032
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SubCellBarCode: Proteome-wide Mapping of Protein Localization and Relocalization.
    Orre LM; Vesterlund M; Pan Y; Arslan T; Zhu Y; Fernandez Woodbridge A; Frings O; Fredlund E; Lehtiö J
    Mol Cell; 2019 Jan; 73(1):166-182.e7. PubMed ID: 30609389
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fractionation of Subcellular Compartments from Human Brain Tissue.
    Mueller TM; Kim P; Meador-Woodruff JH
    Methods Mol Biol; 2019; 1941():201-223. PubMed ID: 30707436
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Subcellular fractionation methods and strategies for proteomics.
    Lee YH; Tan HT; Chung MC
    Proteomics; 2010 Nov; 10(22):3935-56. PubMed ID: 21080488
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Subcellular Fractionation for DIGE-Based Proteomics.
    Murphy S
    Methods Mol Biol; 2018; 1664():233-243. PubMed ID: 29019137
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temporal regulation of EGF signalling networks by the scaffold protein Shc1.
    Zheng Y; Zhang C; Croucher DR; Soliman MA; St-Denis N; Pasculescu A; Taylor L; Tate SA; Hardy WR; Colwill K; Dai AY; Bagshaw R; Dennis JW; Gingras AC; Daly RJ; Pawson T
    Nature; 2013 Jul; 499(7457):166-71. PubMed ID: 23846654
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New application of a subcellular fractionation method to kidney and testis for the determination of conjugated linoleic acid in selected cell organelles of healthy and cancerous human tissues.
    Hoffmann K; Blaudszun J; Brunken C; Höpker WW; Tauber R; Steinhart H
    Anal Bioanal Chem; 2005 Mar; 381(6):1138-44. PubMed ID: 15761741
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.