BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

382 related articles for article (PubMed ID: 34033753)

  • 61. Homo-PROTACs for the Chemical Knockdown of Cereblon.
    Steinebach C; Lindner S; Udeshi ND; Mani DC; Kehm H; Köpff S; Carr SA; Gütschow M; Krönke J
    ACS Chem Biol; 2018 Sep; 13(9):2771-2782. PubMed ID: 30118587
    [TBL] [Abstract][Full Text] [Related]  

  • 62. The novel cereblon modulator CC-885 inhibits mitophagy via selective degradation of BNIP3L.
    Hao BB; Li XJ; Jia XL; Wang YX; Zhai LH; Li DZ; Liu J; Zhang D; Chen YL; Xu YH; Lee SK; Xu GF; Chen XH; Dang YJ; Liu B; Tan MJ
    Acta Pharmacol Sin; 2020 Sep; 41(9):1246-1254. PubMed ID: 32210356
    [TBL] [Abstract][Full Text] [Related]  

  • 63. On the correlation of cereblon binding, fluorination and antiangiogenic properties of immunomodulatory drugs.
    Heim C; Maiwald S; Steinebach C; Collins MK; Strope J; Chau CH; Figg WD; Gütschow M; Hartmann MD
    Biochem Biophys Res Commun; 2021 Jan; 534():67-72. PubMed ID: 33310190
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Role of cereblon in angiogenesis and in mediating the antiangiogenic activity of immunomodulatory drugs.
    Beedie SL; Huang PA; Harris EM; Strope JD; Mahony C; Chau CH; Vargesson N; Figg WD
    FASEB J; 2020 Sep; 34(9):11395-11404. PubMed ID: 32677118
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Cereblon is recruited to aggresome and shows cytoprotective effect against ubiquitin-proteasome system dysfunction.
    Sawamura N; Wakabayashi S; Matsumoto K; Yamada H; Asahi T
    Biochem Biophys Res Commun; 2015 Sep; 464(4):1054-1059. PubMed ID: 26188093
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Identification and selectivity profiling of small-molecule degraders via multi-omics approaches.
    Scholes NS; Mayor-Ruiz C; Winter GE
    Cell Chem Biol; 2021 Jul; 28(7):1048-1060. PubMed ID: 33811812
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Cereblon target validation using a covalent inhibitor of neosubstrate recruitment.
    Dann GP; Liu H; Nowak RP; Jones LH
    Methods Enzymol; 2023; 681():155-167. PubMed ID: 36764755
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Development of Phenyl-substituted Isoindolinone- and Benzimidazole-type Cereblon Ligands for Targeted Protein Degradation.
    Nie X; Zhao Y; Tang H; Zhang Z; Liao J; Almodovar-Rivera CM; Sundaresan R; Xie H; Guo L; Wang B; Guan H; Xing Y; Tang W
    Chembiochem; 2024 Feb; 25(4):e202300685. PubMed ID: 38116854
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Advancing targeted protein degrader discovery by measuring cereblon engagement in cells.
    Zerfas BL; Huerta F; Liu H; Du G; Gray NS; Jones LH; Nowak RP
    Methods Enzymol; 2023; 681():169-188. PubMed ID: 36764756
    [TBL] [Abstract][Full Text] [Related]  

  • 70. pSILAC mass spectrometry reveals ZFP91 as IMiD-dependent substrate of the CRL4
    An J; Ponthier CM; Sack R; Seebacher J; Stadler MB; Donovan KA; Fischer ES
    Nat Commun; 2017 May; 8():15398. PubMed ID: 28530236
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Cereblon-mediated degradation of the amyloid precursor protein via the ubiquitin-proteasome pathway.
    Kurihara T; Asahi T; Sawamura N
    Biochem Biophys Res Commun; 2020 Mar; 524(1):236-241. PubMed ID: 31983437
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Leveraging Ligand Affinity and Properties: Discovery of Novel Benzamide-Type Cereblon Binders for the Design of PROTACs.
    Steinebach C; Bricelj A; Murgai A; Sosič I; Bischof L; Ng YLD; Heim C; Maiwald S; Proj M; Voget R; Feller F; Košmrlj J; Sapozhnikova V; Schmidt A; Zuleeg MR; Lemnitzer P; Mertins P; Hansen FK; Gütschow M; Krönke J; Hartmann MD
    J Med Chem; 2023 Nov; 66(21):14513-14543. PubMed ID: 37902300
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Profiling CELMoD-Mediated Degradation of Cereblon Neosubstrates.
    Thompson JW; Clayton T; Khambatta G; Bateman LA; Carroll CW; Chamberlain PP; Matyskiela ME
    Methods Mol Biol; 2021; 2365():283-300. PubMed ID: 34432250
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Potent and Selective Mitogen-Activated Protein Kinase Kinase 1/2 (MEK1/2) Heterobifunctional Small-molecule Degraders.
    Hu J; Wei J; Yim H; Wang L; Xie L; Jin MS; Kabir M; Qin L; Chen X; Liu J; Jin J
    J Med Chem; 2020 Dec; 63(24):15883-15905. PubMed ID: 33284613
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Molecular Mechanisms of the Teratogenic Effects of Thalidomide.
    Asatsuma-Okumura T; Ito T; Handa H
    Pharmaceuticals (Basel); 2020 May; 13(5):. PubMed ID: 32414180
    [TBL] [Abstract][Full Text] [Related]  

  • 76. CRL4
    Barankiewicz J; Salomon-Perzyński A; Misiewicz-Krzemińska I; Lech-Marańda E
    Cancers (Basel); 2022 Sep; 14(18):. PubMed ID: 36139651
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Cereblon modulators: Low molecular weight inducers of protein degradation.
    Chamberlain PP; Cathers BE
    Drug Discov Today Technol; 2019 Apr; 31():29-34. PubMed ID: 31200856
    [TBL] [Abstract][Full Text] [Related]  

  • 78. A genome-scale CRISPR-Cas9 screening in myeloma cells identifies regulators of immunomodulatory drug sensitivity.
    Liu J; Song T; Zhou W; Xing L; Wang S; Ho M; Peng Z; Tai YT; Hideshima T; Anderson KC; Cang Y
    Leukemia; 2019 Jan; 33(1):171-180. PubMed ID: 30026574
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Cereblon: promise and challenges for combating human diseases.
    Kim HK; Seol JE; Ahn SW; Jeon S; Park CS; Han J
    Pflugers Arch; 2021 Nov; 473(11):1695-1711. PubMed ID: 34553266
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Hypnotic effect of thalidomide is independent of teratogenic ubiquitin/proteasome pathway.
    Hirose Y; Kitazono T; Sezaki M; Abe M; Sakimura K; Funato H; Handa H; Vogt KE; Yanagisawa M
    Proc Natl Acad Sci U S A; 2020 Sep; 117(37):23106-23112. PubMed ID: 32848052
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.