BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 3403384)

  • 41. [Effect of sildenafil on ABR thresholds shift to noise-induced hearing loss in guinea pigs].
    Zhang SJ; Zhang X; Liang Y; Yue ZL
    Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi; 2011 Oct; 46(10):844-7. PubMed ID: 22321424
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Acrylonitrile produces transient cochlear function loss and potentiates permanent noise-induced hearing loss.
    Fechter LD; Klis SF; Shirwany NA; Moore TG; Rao DB
    Toxicol Sci; 2003 Sep; 75(1):117-23. PubMed ID: 12832658
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Increased noise severity limits potentiation of noise induced hearing loss by carbon monoxide.
    Rao DB; Fechter LD
    Hear Res; 2000 Dec; 150(1-2):206-14. PubMed ID: 11077204
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Analysis of the cochlear microphonic to a low-frequency tone embedded in filtered noise.
    Chertoff ME; Earl BR; Diaz FJ; Sorensen JL
    J Acoust Soc Am; 2012 Nov; 132(5):3351-62. PubMed ID: 23145616
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Cochlear injuries induced by the combined exposure to noise and styrene.
    Chen GD; Henderson D
    Hear Res; 2009 Aug; 254(1-2):25-33. PubMed ID: 19371775
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Comparison of functional and morphologic characteristics of mice models of noise-induced hearing loss.
    Park SN; Back SA; Park KH; Seo JH; Noh HI; Akil O; Lustig LR; Yeo SW
    Auris Nasus Larynx; 2013 Feb; 40(1):11-7. PubMed ID: 22364846
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The structural and functional consequences of acoustic injury in the cochlea and peripheral auditory system: a five year update.
    Saunders JC; Cohen YE; Szymko YM
    J Acoust Soc Am; 1991 Jul; 90(1):136-46. PubMed ID: 1880281
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Consequences of noise- or styrene-induced cochlear damages on glutamate decarboxylase levels in the rat inferior colliculus.
    Pouyatos B; Morel G; Lambert-Xolin AM; Maguin K; Campo P
    Hear Res; 2004 Mar; 189(1-2):83-91. PubMed ID: 14987755
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Hair cell condition and auditory nerve response in normal and noise-damaged cochleas.
    Liberman MC; Beil DG
    Acta Otolaryngol; 1979; 88(3-4):161-76. PubMed ID: 495068
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effect of manganese and manganese plus noise on auditory function and cochlear structures.
    Muthaiah VPK; Chen GD; Ding D; Salvi R; Roth JA
    Neurotoxicology; 2016 Jul; 55():65-73. PubMed ID: 27235191
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Surface-recorded cochlear microphonic potentials during temporary threshold shifts in man.
    Pratt H; Sohmer H; Barazani N
    Audiology; 1978; 17(3):204-12. PubMed ID: 666656
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Auditory dysfunction and cochlear vascular injury following trimethyltin exposure in the guinea pig.
    Fechter LD; Carlisle L
    Toxicol Appl Pharmacol; 1990 Aug; 105(1):133-43. PubMed ID: 2392802
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Noise-induced threshold shift and cochlear pathology in the Mongolian gerbil.
    Ryan A; Bone RC
    J Acoust Soc Am; 1978 Apr; 63(4):1145-51. PubMed ID: 649873
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Cochlear pathology induced by styrene.
    Lataye R; Campo P; Barthelemy C; Loquet G; Bonnet P
    Neurotoxicol Teratol; 2001; 23(1):71-9. PubMed ID: 11274877
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Noise induced reversible changes of cochlear ribbon synapses contribute to temporary hearing loss in mice.
    Shi L; Liu K; Wang H; Zhang Y; Hong Z; Wang M; Wang X; Jiang X; Yang S
    Acta Otolaryngol; 2015; 135(11):1093-102. PubMed ID: 26139555
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Sarthran preserves cochlear microcirculation and reduces temporary threshold shifts after noise exposure.
    Goldwin B; Khan MJ; Shivapuja B; Seidman MD; Quirk WS
    Otolaryngol Head Neck Surg; 1998 May; 118(5):576-83. PubMed ID: 9591853
    [TBL] [Abstract][Full Text] [Related]  

  • 57. [Frequency selectivity of the normal guinea pig cochlea and in experimental hearing loss].
    Tavartkiladze GA; Kharrison RV
    Fiziol Zh SSSR Im I M Sechenova; 1985 Apr; 71(4):461-5. PubMed ID: 3996676
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Dynamic changes in hair cell stereocilia and cochlear transduction after noise exposure.
    Wang H; Yin S; Yu Z; Huang Y; Wang J
    Biochem Biophys Res Commun; 2011 Jun; 409(4):616-21. PubMed ID: 21616058
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The origin of the low-frequency microphonic in the first cochlear turn of guinea-pig.
    Patuzzi RB; Yates GK; Johnstone BM
    Hear Res; 1989 May; 39(1-2):177-88. PubMed ID: 2737964
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Calcineurin activation contributes to noise-induced hearing loss.
    Minami SB; Yamashita D; Schacht J; Miller JM
    J Neurosci Res; 2004 Nov; 78(3):383-92. PubMed ID: 15389832
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.