These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 34033941)
1. Direct small molecule ADaM-site AMPK activators reveal an AMPKγ3-independent mechanism for blood glucose lowering. Jørgensen NO; Kjøbsted R; Larsen MR; Birk JB; Andersen NR; Albuquerque B; Schjerling P; Miller R; Carling D; Pehmøller CK; Wojtaszewski JFP Mol Metab; 2021 Sep; 51():101259. PubMed ID: 34033941 [TBL] [Abstract][Full Text] [Related]
2. Compound- and fiber type-selective requirement of AMPKγ3 for insulin-independent glucose uptake in skeletal muscle. Rhein P; Desjardins EM; Rong P; Ahwazi D; Bonhoure N; Stolte J; Santos MD; Ovens AJ; Ehrlich AM; Sanchez Garcia JL; Ouyang Q; Yabut JM; Kjolby M; Membrez M; Jessen N; Oakhill JS; Treebak JT; Maire P; Scott JW; Sanders MJ; Descombes P; Chen S; Steinberg GR; Sakamoto K Mol Metab; 2021 Sep; 51():101228. PubMed ID: 33798773 [TBL] [Abstract][Full Text] [Related]
3. Knockout of the alpha2 but not alpha1 5'-AMP-activated protein kinase isoform abolishes 5-aminoimidazole-4-carboxamide-1-beta-4-ribofuranosidebut not contraction-induced glucose uptake in skeletal muscle. Jørgensen SB; Viollet B; Andreelli F; Frøsig C; Birk JB; Schjerling P; Vaulont S; Richter EA; Wojtaszewski JF J Biol Chem; 2004 Jan; 279(2):1070-9. PubMed ID: 14573616 [TBL] [Abstract][Full Text] [Related]
4. Benzimidazole derivative small-molecule 991 enhances AMPK activity and glucose uptake induced by AICAR or contraction in skeletal muscle. Bultot L; Jensen TE; Lai YC; Madsen AL; Collodet C; Kviklyte S; Deak M; Yavari A; Foretz M; Ghaffari S; Bellahcene M; Ashrafian H; Rider MH; Richter EA; Sakamoto K Am J Physiol Endocrinol Metab; 2016 Oct; 311(4):E706-E719. PubMed ID: 27577855 [TBL] [Abstract][Full Text] [Related]
5. Prior treatment with the AMPK activator AICAR induces subsequently enhanced glucose uptake in isolated skeletal muscles from 24-month-old rats. Oki K; Arias EB; Kanzaki M; Cartee GD Appl Physiol Nutr Metab; 2018 Aug; 43(8):795-805. PubMed ID: 29518344 [TBL] [Abstract][Full Text] [Related]
6. AICAR treatment for 14 days normalizes obesity-induced dysregulation of TORC1 signaling and translational capacity in fasted skeletal muscle. Drake JC; Alway SE; Hollander JM; Williamson DL Am J Physiol Regul Integr Comp Physiol; 2010 Dec; 299(6):R1546-54. PubMed ID: 20844264 [TBL] [Abstract][Full Text] [Related]
7. The human AMPKγ3 R225W mutation negatively impacts site-1 nucleotide binding and does not enhance basal AMPKγ3-associated activity nor glycogen production in human or mouse skeletal muscle. Eskesen NO; Kjøbsted R; Birk JB; Henriksen NS; Andersen NR; Ringholm S; Pilegaard H; Wojtaszewski JFP Acta Physiol (Oxf); 2024 Oct; 240(10):e14213. PubMed ID: 39171449 [TBL] [Abstract][Full Text] [Related]
8. Role of adenosine 5'-monophosphate-activated protein kinase in interleukin-6 release from isolated mouse skeletal muscle. Glund S; Treebak JT; Long YC; Barres R; Viollet B; Wojtaszewski JF; Zierath JR Endocrinology; 2009 Feb; 150(2):600-6. PubMed ID: 18818284 [TBL] [Abstract][Full Text] [Related]
9. A small-molecule benzimidazole derivative that potently activates AMPK to increase glucose transport in skeletal muscle: comparison with effects of contraction and other AMPK activators. Lai YC; Kviklyte S; Vertommen D; Lantier L; Foretz M; Viollet B; Hallén S; Rider MH Biochem J; 2014 Jun; 460(3):363-75. PubMed ID: 24665903 [TBL] [Abstract][Full Text] [Related]
10. Dissociation of AMP-activated protein kinase and p38 mitogen-activated protein kinase signaling in skeletal muscle. Ho RC; Fujii N; Witters LA; Hirshman MF; Goodyear LJ Biochem Biophys Res Commun; 2007 Oct; 362(2):354-9. PubMed ID: 17709097 [TBL] [Abstract][Full Text] [Related]
11. Molecular mechanism by which AMP-activated protein kinase activation promotes glycogen accumulation in muscle. Hunter RW; Treebak JT; Wojtaszewski JF; Sakamoto K Diabetes; 2011 Mar; 60(3):766-74. PubMed ID: 21282366 [TBL] [Abstract][Full Text] [Related]
12. AICAR administration affects glucose metabolism by upregulating the novel glucose transporter, GLUT8, in equine skeletal muscle. de Laat MA; Robinson MA; Gruntmeir KJ; Liu Y; Soma LR; Lacombe VA Vet J; 2015 Sep; 205(3):381-6. PubMed ID: 26116041 [TBL] [Abstract][Full Text] [Related]
13. Short-term adenosine monophosphate-activated protein kinase activator 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside treatment increases the sirtuin 1 protein expression in skeletal muscle. Suwa M; Nakano H; Radak Z; Kumagai S Metabolism; 2011 Mar; 60(3):394-403. PubMed ID: 20362304 [TBL] [Abstract][Full Text] [Related]
14. AICAR and metformin, but not exercise, increase muscle glucose transport through AMPK-, ERK-, and PDK1-dependent activation of atypical PKC. Sajan MP; Bandyopadhyay G; Miura A; Standaert ML; Nimal S; Longnus SL; Van Obberghen E; Hainault I; Foufelle F; Kahn R; Braun U; Leitges M; Farese RV Am J Physiol Endocrinol Metab; 2010 Feb; 298(2):E179-92. PubMed ID: 19887597 [TBL] [Abstract][Full Text] [Related]
15. The ULK1/2 and AMPK Inhibitor SBI-0206965 Blocks AICAR and Insulin-Stimulated Glucose Transport. Knudsen JR; Madsen AB; Persson KW; Henríquez-Olguín C; Li Z; Jensen TE Int J Mol Sci; 2020 Mar; 21(7):. PubMed ID: 32231045 [TBL] [Abstract][Full Text] [Related]