These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

303 related articles for article (PubMed ID: 34034032)

  • 1. Sub-band target alignment common spatial pattern in brain-computer interface.
    Zhang X; She Q; Chen Y; Kong W; Mei C
    Comput Methods Programs Biomed; 2021 Aug; 207():106150. PubMed ID: 34034032
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Class discrepancy-guided sub-band filter-based common spatial pattern for motor imagery classification.
    Luo J; Wang J; Xu R; Xu K
    J Neurosci Methods; 2019 Jul; 323():98-107. PubMed ID: 31141703
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CSP-TSM: Optimizing the performance of Riemannian tangent space mapping using common spatial pattern for MI-BCI.
    Kumar S; Mamun K; Sharma A
    Comput Biol Med; 2017 Dec; 91():231-242. PubMed ID: 29100117
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temporally Constrained Sparse Group Spatial Patterns for Motor Imagery BCI.
    Zhang Y; Nam CS; Zhou G; Jin J; Wang X; Cichocki A
    IEEE Trans Cybern; 2019 Sep; 49(9):3322-3332. PubMed ID: 29994667
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The CSP-Based New Features Plus Non-Convex Log Sparse Feature Selection for Motor Imagery EEG Classification.
    Zhang S; Zhu Z; Zhang B; Feng B; Yu T; Li Z
    Sensors (Basel); 2020 Aug; 20(17):. PubMed ID: 32842635
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimizing spatial patterns with sparse filter bands for motor-imagery based brain-computer interface.
    Zhang Y; Zhou G; Jin J; Wang X; Cichocki A
    J Neurosci Methods; 2015 Nov; 255():85-91. PubMed ID: 26277421
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Learning Common Time-Frequency-Spatial Patterns for Motor Imagery Classification.
    Miao Y; Jin J; Daly I; Zuo C; Wang X; Cichocki A; Jung TP
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():699-707. PubMed ID: 33819158
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distinguishable spatial-spectral feature learning neural network framework for motor imagery-based brain-computer interface.
    Liu C; Jin J; Xu R; Li S; Zuo C; Sun H; Wang X; Cichocki A
    J Neural Eng; 2021 Aug; 18(4):. PubMed ID: 34384059
    [No Abstract]   [Full Text] [Related]  

  • 9. Motor imagery EEG classification based on ensemble support vector learning.
    Luo J; Gao X; Zhu X; Wang B; Lu N; Wang J
    Comput Methods Programs Biomed; 2020 Sep; 193():105464. PubMed ID: 32283387
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exploring Feature Selection and Classification Techniques to Improve the Performance of an Electroencephalography-Based Motor Imagery Brain-Computer Interface System.
    Kabir MH; Akhtar NI; Tasnim N; Miah ASM; Lee HS; Jang SW; Shin J
    Sensors (Basel); 2024 Aug; 24(15):. PubMed ID: 39124036
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Learning Optimal Time-Frequency-Spatial Features by the CiSSA-CSP Method for Motor Imagery EEG Classification.
    Hu H; Pu Z; Li H; Liu Z; Wang P
    Sensors (Basel); 2022 Nov; 22(21):. PubMed ID: 36366225
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An improved discriminative filter bank selection approach for motor imagery EEG signal classification using mutual information.
    Kumar S; Sharma A; Tsunoda T
    BMC Bioinformatics; 2017 Dec; 18(Suppl 16):545. PubMed ID: 29297303
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multi-band spatial feature extraction and classification for motor imaging EEG signals based on OSFBCSP-GAO-SVM model : EEG signal processing.
    Shang Y; Gao X; An A
    Med Biol Eng Comput; 2023 Jun; 61(6):1581-1602. PubMed ID: 36813927
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Classification of motor imagery using chaotic entropy based on sub-band EEG source localization.
    Bi J; Gao Y; Peng Z; Ma Y
    J Neural Eng; 2024 May; 21(3):. PubMed ID: 38722315
    [No Abstract]   [Full Text] [Related]  

  • 15. A Computationally Efficient Multiclass Time-Frequency Common Spatial Pattern Analysis on EEG Motor Imagery.
    Zhang C; Eskandarian A
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():514-518. PubMed ID: 33018040
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Three-class Motor Imagery Classification Based on Optimal Sub-band Features of Independent Components].
    Kang S; Zhou B; Wu X
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2016 Apr; 33(2):208-15. PubMed ID: 29708317
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Online detection of class-imbalanced error-related potentials evoked by motor imagery.
    Liu Q; Zheng W; Chen K; Ma L; Ai Q
    J Neural Eng; 2021 Apr; 18(4):. PubMed ID: 33823492
    [No Abstract]   [Full Text] [Related]  

  • 18. Transformed common spatial pattern for motor imagery-based brain-computer interfaces.
    Ma Z; Wang K; Xu M; Yi W; Xu F; Ming D
    Front Neurosci; 2023; 17():1116721. PubMed ID: 36960172
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep Temporal-Spatial Feature Learning for Motor Imagery-Based Brain-Computer Interfaces.
    Chen J; Yu Z; Gu Z; Li Y
    IEEE Trans Neural Syst Rehabil Eng; 2020 Nov; 28(11):2356-2366. PubMed ID: 32956061
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Filter Bank Regularized Common Spatial Pattern Ensemble for Small Sample Motor Imagery Classification.
    Park SH; Lee D; Lee SG
    IEEE Trans Neural Syst Rehabil Eng; 2018 Feb; 26(2):498-505. PubMed ID: 28961119
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.