These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 34034045)

  • 1. Visual cues two-steps ahead are adequate to grasp an object while walking without compromising stability.
    Rinaldi NM; Lim J; Hamill J; Moraes R; van Emmerik R
    Hum Mov Sci; 2021 Aug; 78():102820. PubMed ID: 34034045
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gait and reach-to-grasp movements are mutually modified when performed simultaneously.
    Rinaldi NM; Moraes R
    Hum Mov Sci; 2015 Apr; 40():38-58. PubMed ID: 25528437
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Walking combined with reach-to-grasp while crossing obstacles at different distances.
    Rinaldi NM; Lim J; Hamill J; Van Emmerik R; Moraes R
    Gait Posture; 2018 Sep; 65():1-7. PubMed ID: 30558913
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Changes in interlimb coordination during walking and grasping task in older adult fallers and non-fallers.
    Rinaldi NM; Emmerik RV; Moraes R
    Hum Mov Sci; 2017 Oct; 55():121-137. PubMed ID: 28810172
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A preliminary analysis of the coordination of reaching, grasping, and walking.
    Cockell DL; Carnahan H; McFadyen BJ
    Percept Mot Skills; 1995 Oct; 81(2):515-9. PubMed ID: 8570350
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interlimb Coordination During a Combined Gait and Prehension Task.
    Bellinger GC; Pickett KA; Mason AH
    Motor Control; 2020 Jan; 24(1):57-74. PubMed ID: 31323642
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Older adults with history of falls are unable to perform walking and prehension movements simultaneously.
    Rinaldi NM; Moraes R
    Neuroscience; 2016 Mar; 316():249-60. PubMed ID: 26724582
    [TBL] [Abstract][Full Text] [Related]  

  • 8. When two eyes are better than one in prehension: monocular viewing and end-point variance.
    Loftus A; Servos P; Goodale MA; Mendarozqueta N; Mon-Williams M
    Exp Brain Res; 2004 Oct; 158(3):317-27. PubMed ID: 15164152
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Grasping deficits and adaptations in adults with stereo vision losses.
    Melmoth DR; Finlay AL; Morgan MJ; Grant S
    Invest Ophthalmol Vis Sci; 2009 Aug; 50(8):3711-20. PubMed ID: 19339741
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Common organization for unimanual and bimanual reach-to-grasp tasks.
    Tresilian JR; Stelmach GE
    Exp Brain Res; 1997 Jun; 115(2):283-99. PubMed ID: 9224856
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effects of age and postural constraints on prehension.
    Campoi EG; Campoi HG; Moraes R
    Exp Brain Res; 2023 Jul; 241(7):1847-1859. PubMed ID: 37256337
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Old age impairs the use of arbitrary visual cues for predictive control of fingertip forces during grasp.
    Cole KJ; Rotella DL
    Exp Brain Res; 2002 Mar; 143(1):35-41. PubMed ID: 11907688
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of lower peripheral visual cues in the visuomotor coordination of locomotion and prehension.
    Graci V
    Gait Posture; 2011 Oct; 34(4):514-8. PubMed ID: 21807520
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Planning of reach-and-grasp movements: effects of validity and type of object information.
    Loukopoulos LD; Engelbrecht SF; Berthier NE
    J Mot Behav; 2001 Sep; 33(3):255-64. PubMed ID: 11495830
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Some binocular advantages for planning reach, but not grasp, components of prehension.
    Grant S; Conway ML
    Exp Brain Res; 2019 May; 237(5):1239-1255. PubMed ID: 30850853
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of viewing the moving limb and target object during the early phase of movement on the online control of grasping.
    Fukui T; Inui T
    Hum Mov Sci; 2006 Jun; 25(3):349-71. PubMed ID: 16707178
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Visual distractors differentially interfere with the reaching and grasping components of prehension movements.
    Gangitano M; Daprati E; Gentilucci M
    Exp Brain Res; 1998 Oct; 122(4):441-52. PubMed ID: 9827863
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Movement kinematics in prehension are affected by grasping objects of different mass.
    Eastough D; Edwards MG
    Exp Brain Res; 2007 Jan; 176(1):193-8. PubMed ID: 17072606
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selective perturbation of visual input during prehension movements. 1. The effects of changing object position.
    Paulignan Y; MacKenzie C; Marteniuk R; Jeannerod M
    Exp Brain Res; 1991; 83(3):502-12. PubMed ID: 2026193
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Within grasp but out of reach: evidence for a double dissociation between imagined hand and arm movements in the left cerebral hemisphere.
    Johnson SH; Corballis PM; Gazzaniga MS
    Neuropsychologia; 2001; 39(1):36-50. PubMed ID: 11115654
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.