These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 34034095)

  • 21. Crystallographic analysis of facets using electron backscatter diffraction.
    Randle V
    J Microsc; 1999 Sep; 195(3):226-232. PubMed ID: 10460688
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Numerical analysis of longitudinal ultrasonic attenuation in sintered materials using a simplified two-phase model.
    Liu D; Turner JA
    J Acoust Soc Am; 2017 Feb; 141(2):1226. PubMed ID: 28253658
    [TBL] [Abstract][Full Text] [Related]  

  • 23. 3D electron backscatter diffraction study of α lath morphology in additively manufactured Ti-6Al-4V.
    DeMott R; Collins P; Kong C; Liao X; Ringer S; Primig S
    Ultramicroscopy; 2020 Nov; 218():113073. PubMed ID: 32736318
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ultrasonic backscattering model for Rayleigh waves in polycrystals with Born and independent scattering approximations.
    Li S; Huang M; Song Y; Lan B; Li X
    Ultrasonics; 2024 May; 140():107297. PubMed ID: 38520818
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Combined quantitative evaluation on early-stage fatigue damage of coarse-grained austenite stainless steel based on EBSD and ultrasonic technique.
    Luo Z; Wang X; Ma Z; Zou L; Zhu X; Lin L
    Ultrasonics; 2020 Apr; 103():106090. PubMed ID: 32044569
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ultrasonic backscatter from elongated grains using line focused ultrasound.
    Kube CM; Arguelles AP; Turner JA
    Ultrasonics; 2018 Jan; 82():79-83. PubMed ID: 28759759
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Influence of grain morphology on ultrasonic wave attenuation in polycrystalline media with statistically equiaxed grains.
    Ryzy M; Grabec T; Sedlák P; Veres IA
    J Acoust Soc Am; 2018 Jan; 143(1):219. PubMed ID: 29390780
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ultrasonic wave propagation predictions for polycrystalline materials using three-dimensional synthetic microstructures: Phase velocity variations.
    Norouzian M; Turner JA
    J Acoust Soc Am; 2019 Apr; 145(4):2171. PubMed ID: 31046304
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Microstructural Characterization of Additively Manufactured Metal Components Using Linear and Nonlinear Ultrasonic Techniques.
    Park SH; Choi S; Song DG; Jhang KY
    Materials (Basel); 2022 May; 15(11):. PubMed ID: 35683173
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Finite-element and semi-analytical study of elastic wave propagation in strongly scattering polycrystals.
    Huang M; Huthwaite P; Rokhlin SI; Lowe MJS
    Proc Math Phys Eng Sci; 2022 Feb; 478(2258):20210850. PubMed ID: 35221773
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A Wavelet-Based Processing method for simultaneously determining ultrasonic velocity and material thickness.
    Loosvelt M; Lasaygues P
    Ultrasonics; 2011 Apr; 51(3):325-39. PubMed ID: 21094965
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Distribution of hydroxyapatite crystallite orientation and ultrasonic wave velocity in ring-shaped cortical bone of bovine femur.
    Yamato Y; Matsukawa M; Mizukawa H; Yanagitani T; Yamazaki K; Nagano A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008; 55(6):1298-303. PubMed ID: 18599417
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Elastic wave velocity dispersion in polycrystals with elongated grains: Theoretical and numerical analysis.
    Huang M; Sha G; Huthwaite P; Rokhlin SI; Lowe MJS
    J Acoust Soc Am; 2020 Dec; 148(6):3645. PubMed ID: 33379920
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Multi-parameter optimization of attenuation data for characterizing grain size distributions and application to bimodal microstructures.
    Renaud A; Tie B; Mouronval AS; Schmitt JH
    Ultrasonics; 2021 Aug; 115():106425. PubMed ID: 33882448
    [TBL] [Abstract][Full Text] [Related]  

  • 35. High-resolution Lamb waves dispersion curves estimation and elastic property inversion.
    Chen Q; Xu K; Ta D
    Ultrasonics; 2021 Aug; 115():106427. PubMed ID: 33910155
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Layered material characterization using ultrasonic transmission. An inverse estimation methodology.
    Messineo MG; Rus G; Eliçabe GE; Frontini GL
    Ultrasonics; 2016 Feb; 65():315-28. PubMed ID: 26456278
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Surface treatment and electron backscatter diffraction (EBSD) analysis of the body-centered cubic phase in Mg-Li based alloys processed by severe plastic deformation.
    Mineta T
    Micron; 2020 Oct; 137():102914. PubMed ID: 32645653
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Characterization of microstructural changes due to prolonged thermal exposure of directionally solidified Ni-base super alloy CM 247LC using ultrasonic.
    Mukhopadhyay A; Chatterjee D; Mondal C; Punnose S; Gopinath K
    Ultrasonics; 2018 Nov; 90():42-51. PubMed ID: 29908423
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Determination of elastic constants of generally anisotropic inclined lamellar structure using line-focus acoustic microscopy.
    Kim JY; Rokhlin SI
    J Acoust Soc Am; 2009 Dec; 126(6):2998-3007. PubMed ID: 20000913
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Grain-Size Distribution Effects on the Attenuation of Laser-Generated Ultrasound in α-Titanium Alloy.
    Bai X; Zhao Y; Ma J; Liu Y; Wang Q
    Materials (Basel); 2018 Dec; 12(1):. PubMed ID: 30597990
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.