BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 34034186)

  • 1. Effects of braking conditions on nanoparticle emissions from passenger car friction brakes.
    Vojtíšek-Lom M; Vaculík M; Pechout M; Hopan F; Arul Raj AF; Penumarti S; Horák JS; Popovicheva O; Ondráček J; Doušová B
    Sci Total Environ; 2021 Sep; 788():147779. PubMed ID: 34034186
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PM
    Liu Y; Chen H; Yin C; Federici M; Perricone G; Li Y; Margaritis D; Shen Y; Guo J; Wei T
    Chemosphere; 2022 Oct; 305():135481. PubMed ID: 35753424
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantifying the change of brake wear particulate matter emissions through powertrain electrification in passenger vehicles.
    Hicks W; Green DC; Beevers S
    Environ Pollut; 2023 Nov; 336():122400. PubMed ID: 37595730
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Laboratory and on-road testing for brake wear particle emissions: a review.
    Feo ML; Torre M; Tratzi P; Battistelli F; Tomassetti L; Petracchini F; Guerriero E; Paolini V
    Environ Sci Pollut Res Int; 2023 Sep; 30(45):100282-100300. PubMed ID: 37620705
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Study of Brake Wear Particle Emissions: Impact of Braking and Cruising Conditions.
    Zum Hagen FHF; Mathissen M; Grabiec T; Hennicke T; Rettig M; Grochowicz J; Vogt R; Benter T
    Environ Sci Technol; 2019 May; 53(9):5143-5150. PubMed ID: 30935200
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Particulate emissions of a modern diesel passenger car under laboratory and real-world transient driving conditions.
    Wihersaari H; Pirjola L; Karjalainen P; Saukko E; Kuuluvainen H; Kulmala K; Keskinen J; Rönkkö T
    Environ Pollut; 2020 Oct; 265(Pt B):114948. PubMed ID: 32554088
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Insights on non-exhaust emissions: An approach for the chemical characterization of debris generated during braking.
    Russo C; Gautier di Confiengo G; Magnacca G; Faga MG; Apicella B
    Heliyon; 2023 Oct; 9(10):e20672. PubMed ID: 37842568
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generation of Nanoparticles from Friction between Railway Brake Disks and Pads.
    Namgung HG; Kim JB; Woo SH; Park S; Kim M; Kim MS; Bae GN; Park D; Kwon SB
    Environ Sci Technol; 2016 Apr; 50(7):3453-61. PubMed ID: 26967707
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Testing Passenger Car Brake Pad Exploitation Time's Impact on the Values of the Coefficient of Friction and Abrasive Wear Rate Using a Pin-on-Disc Method.
    Borawski A
    Materials (Basel); 2022 Mar; 15(6):. PubMed ID: 35329444
    [TBL] [Abstract][Full Text] [Related]  

  • 10. E-bikers' braking behavior: Results from a naturalistic cycling study.
    Huertas-Leyva P; Dozza M; Baldanzini N
    Traffic Inj Prev; 2019; 20(sup3):62-67. PubMed ID: 31442089
    [No Abstract]   [Full Text] [Related]  

  • 11. Applying machine learning to construct braking emission model for real-world road driving.
    Wei N; Men Z; Ren C; Jia Z; Zhang Y; Jin J; Chang J; Lv Z; Guo D; Yang Z; Guo J; Wu L; Peng J; Wang T; Du Z; Zhang Q; Mao H
    Environ Int; 2022 Aug; 166():107386. PubMed ID: 35803077
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of Operating Time on Selected Tribological Properties of the Friction Material in the Brake Pads of Passenger Cars.
    Borawski A
    Materials (Basel); 2021 Feb; 14(4):. PubMed ID: 33673339
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation and Modelling of the Weight Wear of Friction Pads of a Railway Disc Brake.
    Sawczuk W; Merkisz-Guranowska A; Ulbrich D; Kowalczyk J; Cañás AR
    Materials (Basel); 2022 Sep; 15(18):. PubMed ID: 36143624
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determining factors and parameterization of brake wear particle emission.
    Men Z; Zhang X; Peng J; Zhang J; Fang T; Guo Q; Wei N; Zhang Q; Wang T; Wu L; Mao H
    J Hazard Mater; 2022 Jul; 434():128856. PubMed ID: 35413517
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct measurement of brake and tire wear particles based on real-world driving conditions.
    Zhang Q; Fang T; Men Z; Wei N; Peng J; Du T; Zhang X; Ma Y; Wu L; Mao H
    Sci Total Environ; 2024 Jan; 906():167764. PubMed ID: 37832679
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Particle formation due to brake wear, influence on the people health and measures for their reduction: a review.
    Stojanovic N; Glisovic J; Abdullah OI; Belhocine A; Grujic I
    Environ Sci Pollut Res Int; 2022 Feb; 29(7):9606-9625. PubMed ID: 34993797
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accuracy Improvement of Braking Force via Deceleration Feedback Functions Applied to Braking Systems.
    Wang Y; Wen X; Meng H; Zhang X; Li R; Serra R
    Sensors (Basel); 2023 Jun; 23(13):. PubMed ID: 37447824
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of non-exhaust coarse and fine particles from on-road driving and laboratory measurements.
    Kwak JH; Kim H; Lee J; Lee S
    Sci Total Environ; 2013 Aug; 458-460():273-82. PubMed ID: 23664985
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Emission factor for antimony in brake abrasion dusts as one of the major atmospheric antimony sources.
    Iijima A; Sato K; Yano K; Kato M; Kozawa K; Furuta N
    Environ Sci Technol; 2008 Apr; 42(8):2937-42. PubMed ID: 18497147
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of Braking Speed on the Friction and Wear Characteristics of High-Speed Railway Braking Materials under High Ambient Humidity Conditions.
    Ma L; Zhang M; Ding S; Ou Y
    Materials (Basel); 2023 Sep; 16(17):. PubMed ID: 37687719
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.