These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
260 related articles for article (PubMed ID: 34034272)
1. Computer-aided detection of colorectal polyps using a newly generated deep convolutional neural network: from development to first clinical experience. Pfeifer L; Neufert C; Leppkes M; Waldner MJ; Häfner M; Beyer A; Hoffman A; Siersema PD; Neurath MF; Rath T Eur J Gastroenterol Hepatol; 2021 Dec; 33(1S Suppl 1):e662-e669. PubMed ID: 34034272 [TBL] [Abstract][Full Text] [Related]
2. Artificial intelligence technologies for the detection of colorectal lesions: The future is now. Attardo S; Chandrasekar VT; Spadaccini M; Maselli R; Patel HK; Desai M; Capogreco A; Badalamenti M; Galtieri PA; Pellegatta G; Fugazza A; Carrara S; Anderloni A; Occhipinti P; Hassan C; Sharma P; Repici A World J Gastroenterol; 2020 Oct; 26(37):5606-5616. PubMed ID: 33088155 [TBL] [Abstract][Full Text] [Related]
3. Computer-aided automated diminutive colonic polyp detection in colonoscopy by using deep machine learning system; first indigenous algorithm developed in India. Mazumdar S; Sinha S; Jha S; Jagtap B Indian J Gastroenterol; 2023 Apr; 42(2):226-232. PubMed ID: 37145230 [TBL] [Abstract][Full Text] [Related]
4. Computer-aided diagnosis of serrated colorectal lesions using non-magnified white-light endoscopic images. Nemoto D; Guo Z; Peng B; Zhang R; Nakajima Y; Hayashi Y; Yamashina T; Aizawa M; Utano K; Lefor AK; Zhu X; Togashi K Int J Colorectal Dis; 2022 Aug; 37(8):1875-1884. PubMed ID: 35861862 [TBL] [Abstract][Full Text] [Related]
5. Deep Learning Localizes and Identifies Polyps in Real Time With 96% Accuracy in Screening Colonoscopy. Urban G; Tripathi P; Alkayali T; Mittal M; Jalali F; Karnes W; Baldi P Gastroenterology; 2018 Oct; 155(4):1069-1078.e8. PubMed ID: 29928897 [TBL] [Abstract][Full Text] [Related]
6. Computer-aided diagnosis for optical diagnosis of diminutive colorectal polyps including sessile serrated lesions: a real-time comparison with screening endoscopists. Houwen BBSL; Hazewinkel Y; Giotis I; Vleugels JLA; Mostafavi NS; van Putten P; Fockens P; Dekker E; Endoscopy; 2023 Aug; 55(8):756-765. PubMed ID: 36623839 [TBL] [Abstract][Full Text] [Related]
7. Polyp characterization using deep learning and a publicly accessible polyp video database. Kader R; Cid-Mejias A; Brandao P; Islam S; Hebbar S; Puyal JG; Ahmad OF; Hussein M; Toth D; Mountney P; Seward E; Vega R; Stoyanov D; Lovat LB Dig Endosc; 2023 Jul; 35(5):645-655. PubMed ID: 36527309 [TBL] [Abstract][Full Text] [Related]
8. Impact of an Endoscopic Quality Improvement Program Focused on Adenoma Detection on Sessile Serrated Adenoma/Polyp Detection. Racho RG; Krishna M; Coe SG; Thomas CS; Crook JE; Diehl NN; Wallace MB Dig Dis Sci; 2017 Jun; 62(6):1464-1471. PubMed ID: 28444509 [TBL] [Abstract][Full Text] [Related]
9. Real-time artificial intelligence (AI)-aided endoscopy improves adenoma detection rates even in experienced endoscopists: a cohort study in Singapore. Koh FH; Ladlad J; ; Teo EK; Lin CL; Foo FJ Surg Endosc; 2023 Jan; 37(1):165-171. PubMed ID: 35882667 [TBL] [Abstract][Full Text] [Related]
11. Development of a computer-aided detection system for colonoscopy and a publicly accessible large colonoscopy video database (with video). Misawa M; Kudo SE; Mori Y; Hotta K; Ohtsuka K; Matsuda T; Saito S; Kudo T; Baba T; Ishida F; Itoh H; Oda M; Mori K Gastrointest Endosc; 2021 Apr; 93(4):960-967.e3. PubMed ID: 32745531 [TBL] [Abstract][Full Text] [Related]
12. Effect of computer-aided colonoscopy on adenoma miss rates and polyp detection: A systematic review and meta-analysis. Shah S; Park N; Chehade NEH; Chahine A; Monachese M; Tiritilli A; Moosvi Z; Ortizo R; Samarasena J J Gastroenterol Hepatol; 2023 Feb; 38(2):162-176. PubMed ID: 36350048 [TBL] [Abstract][Full Text] [Related]
13. The impact of deep convolutional neural network-based artificial intelligence on colonoscopy outcomes: A systematic review with meta-analysis. Aziz M; Fatima R; Dong C; Lee-Smith W; Nawras A J Gastroenterol Hepatol; 2020 Oct; 35(10):1676-1683. PubMed ID: 32267558 [TBL] [Abstract][Full Text] [Related]
14. Two-stage deep-learning-based colonoscopy polyp detection incorporating fisheye and reflection correction. Hsu CM; Chen TH; Hsu CC; Wu CH; Lin CJ; Le PH; Lin CY; Kuo T J Gastroenterol Hepatol; 2024 Apr; 39(4):733-739. PubMed ID: 38225761 [TBL] [Abstract][Full Text] [Related]
15. Effect of a deep-learning computer-aided detection system on adenoma detection during colonoscopy (CADe-DB trial): a double-blind randomised study. Wang P; Liu X; Berzin TM; Glissen Brown JR; Liu P; Zhou C; Lei L; Li L; Guo Z; Lei S; Xiong F; Wang H; Song Y; Pan Y; Zhou G Lancet Gastroenterol Hepatol; 2020 Apr; 5(4):343-351. PubMed ID: 31981517 [TBL] [Abstract][Full Text] [Related]
16. Challenges Facing the Detection of Colonic Polyps: What Can Deep Learning Do? Azer SA Medicina (Kaunas); 2019 Aug; 55(8):. PubMed ID: 31409050 [TBL] [Abstract][Full Text] [Related]
17. Impact of a real-time automatic quality control system on colorectal polyp and adenoma detection: a prospective randomized controlled study (with videos). Su JR; Li Z; Shao XJ; Ji CR; Ji R; Zhou RC; Li GC; Liu GQ; He YS; Zuo XL; Li YQ Gastrointest Endosc; 2020 Feb; 91(2):415-424.e4. PubMed ID: 31454493 [TBL] [Abstract][Full Text] [Related]
18. The application of artificial intelligence in improving colonoscopic adenoma detection rate: Where are we and where are we going. Gan P; Li P; Xia H; Zhou X; Tang X Gastroenterol Hepatol; 2023 Mar; 46(3):203-213. PubMed ID: 35489584 [TBL] [Abstract][Full Text] [Related]
19. Usefulness of a novel computer-aided detection system for colorectal neoplasia: a randomized controlled trial. Gimeno-García AZ; Hernández Negrin D; Hernández A; Nicolás-Pérez D; Rodríguez E; Montesdeoca C; Alarcon O; Romero R; Baute Dorta JL; Cedrés Y; Castillo RD; Jiménez A; Felipe V; Morales D; Ortega J; Reygosa C; Quintero E; Hernández-Guerra M Gastrointest Endosc; 2023 Mar; 97(3):528-536.e1. PubMed ID: 36228695 [TBL] [Abstract][Full Text] [Related]
20. Prediction of Polyp Pathology Using Convolutional Neural Networks Achieves "Resect and Discard" Thresholds. Zachariah R; Samarasena J; Luba D; Duh E; Dao T; Requa J; Ninh A; Karnes W Am J Gastroenterol; 2020 Jan; 115(1):138-144. PubMed ID: 31651444 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]