These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 34034339)

  • 21. Estimating Hearing Thresholds in Hearing-Impaired Adults through Objective Detection of Cortical Auditory Evoked Potentials.
    Van Dun B; Dillon H; Seeto M
    J Am Acad Audiol; 2015 Apr; 26(4):370-83. PubMed ID: 25879241
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dynamically Masked Audiograms With Machine Learning Audiometry.
    Heisey KL; Walker AM; Xie K; Abrams JM; Barbour DL
    Ear Hear; 2020; 41(6):1692-1702. PubMed ID: 33136643
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Validity of diagnostic pure-tone audiometry without a sound-treated environment in older adults.
    Maclennan-Smith F; Swanepoel de W; Hall JW
    Int J Audiol; 2013 Feb; 52(2):66-73. PubMed ID: 23140522
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Distribution characteristics of normal pure-tone thresholds.
    Margolis RH; Wilson RH; Popelka GR; Eikelboom RH; Swanepoel de W; Saly GL
    Int J Audiol; 2015; 54(11):796-805. PubMed ID: 25938502
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparison of hearing thresholds obtained using pure-tone behavioral audiometry, the Cantonese Hearing in Noise Test (CHINT) and cortical evoked response audiometry.
    Wong LL; Cheung C; Wong EC
    Acta Otolaryngol; 2008 Jun; 128(6):654-60. PubMed ID: 18568500
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Word-recognition performance in interrupted noise by young listeners with normal hearing and older listeners with hearing loss.
    Wilson RH; McArdle R; Betancourt MB; Herring K; Lipton T; Chisolm TH
    J Am Acad Audiol; 2010 Feb; 21(2):90-109. PubMed ID: 20166311
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Word recognition for temporally and spectrally distorted materials: the effects of age and hearing loss.
    Smith SL; Pichora-Fuller MK; Wilson RH; Macdonald EN
    Ear Hear; 2012; 33(3):349-66. PubMed ID: 22343546
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Some observations on the nature of the audiometric 4000 hz notch: data from 3430 veterans.
    Wilson RH
    J Am Acad Audiol; 2011 Jan; 22(1):23-33. PubMed ID: 21419067
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Active noise reduction audiometry: a prospective analysis of a new approach to noise management in audiometric testing.
    Bromwich MA; Parsa V; Lanthier N; Yoo J; Parnes LS
    Laryngoscope; 2008 Jan; 118(1):104-9. PubMed ID: 18043495
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fixed-Level Frequency Threshold Testing for Ototoxicity Monitoring.
    Rieke CC; Clavier OH; Allen LV; Anderson AP; Brooks CA; Fellows AM; Brungart DS; Buckey JC
    Ear Hear; 2017; 38(6):e369-e375. PubMed ID: 28362673
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mobile audiometry for hearing threshold assessment: A systematic review and meta-analysis.
    Oremule B; Abbas J; Saunders G; Kluk K; Isba R; Bate S; Bruce I
    Clin Otolaryngol; 2024 Jan; 49(1):74-86. PubMed ID: 37828806
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Extended High-Frequency Audiometry using the Wireless Automated Hearing Test System Compared to Manual Audiometry in Children and Adolescents.
    Blankenship CM; Hickson LM; Quigley T; Larsen E; Lin L; Hunter LL
    medRxiv; 2023 May; ():. PubMed ID: 37292836
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Validity of diagnostic computer-based air and forehead bone conduction audiometry.
    Swanepoel de W; Biagio L
    J Occup Environ Hyg; 2011 Apr; 8(4):210-4. PubMed ID: 21391065
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Validation of a Self-Administered Audiometry Application: An Equivalence Study.
    Whitton JP; Hancock KE; Shannon JM; Polley DB
    Laryngoscope; 2016 Oct; 126(10):2382-8. PubMed ID: 27140227
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Validity of automated threshold audiometry in school aged children.
    Govender SM; Mars M
    Int J Pediatr Otorhinolaryngol; 2018 Feb; 105():97-102. PubMed ID: 29447828
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Clinical validation of automated audiometry with continuous noise-monitoring in a clinically heterogeneous population outside a sound-treated environment.
    Brennan-Jones CG; Eikelboom RH; Swanepoel de W; Friedland PL; Atlas MD
    Int J Audiol; 2016 Sep; 55(9):507-13. PubMed ID: 27206551
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Telephone screening tests for functionally impaired hearing: current use in seven countries and development of a US version.
    Watson CS; Kidd GR; Miller JD; Smits C; Humes LE
    J Am Acad Audiol; 2012; 23(10):757-67. PubMed ID: 23169193
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Assessing the accuracy and reliability of application-based audiometry for hearing evaluation.
    Lee SY; Seo HW; Jung SM; Lee SH; Chung JH
    Sci Rep; 2024 Mar; 14(1):7359. PubMed ID: 38548854
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Extended High-Frequency Smartphone Audiometry: Validity and Reliability.
    Bornman M; Swanepoel W; De Jager LB; Eikelboom RH
    J Am Acad Audiol; 2019 Mar; 30(3):217-226. PubMed ID: 30461416
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An Evaluation of the World Health Organization and American Medical Association Ratings of Hearing Impairment and Simulated Single-Sided Deafness.
    Vermiglio AJ; Griffin S; Post C; Fang X
    J Am Acad Audiol; 2018; 29(7):634-647. PubMed ID: 29988011
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.