These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 34034488)

  • 1. Spontaneous Adsorption-Induced
    Shi Z; Zhang Z; Huang W; Zeng H; Mandić V; Hu X; Zhao L; Zhang X
    Langmuir; 2021 Jun; 37(22):6728-6735. PubMed ID: 34034488
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-Cleaning of Hydrophobic Rough Surfaces by Coalescence-Induced Wetting Transition.
    Zhang K; Li Z; Maxey M; Chen S; Karniadakis GE
    Langmuir; 2019 Feb; 35(6):2431-2442. PubMed ID: 30640480
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Salvinia-Effect-Inspired "Sticky" Superhydrophobic Surfaces by Meniscus-Confined Electrodeposition.
    Zheng D; Jiang Y; Yu W; Jiang X; Zhao X; Choi CH; Sun G
    Langmuir; 2017 Nov; 33(47):13640-13648. PubMed ID: 29096056
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of hydraulic pressure on the stability and transition of wetting modes of superhydrophobic surfaces.
    Zheng QS; Yu Y; Zhao ZH
    Langmuir; 2005 Dec; 21(26):12207-12. PubMed ID: 16342993
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioinspired super-antiwetting interfaces with special liquid-solid adhesion.
    Liu M; Zheng Y; Zhai J; Jiang L
    Acc Chem Res; 2010 Mar; 43(3):368-77. PubMed ID: 19954162
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Superrepellency of underwater hierarchical structures on
    Xiang Y; Huang S; Huang TY; Dong A; Cao D; Li H; Xue Y; Lv P; Duan H
    Proc Natl Acad Sci U S A; 2020 Feb; 117(5):2282-2287. PubMed ID: 31964812
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Range of applicability of the Wenzel and Cassie-Baxter equations for superhydrophobic surfaces.
    Erbil HY; Cansoy CE
    Langmuir; 2009 Dec; 25(24):14135-45. PubMed ID: 19630435
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wetting characteristics of Colocasia esculenta (Taro) leaf and a bioinspired surface thereof.
    Kumar M; Bhardwaj R
    Sci Rep; 2020 Jan; 10(1):935. PubMed ID: 31969578
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Robust Cassie state of wetting in transparent superhydrophobic coatings.
    Tuvshindorj U; Yildirim A; Ozturk FE; Bayindir M
    ACS Appl Mater Interfaces; 2014 Jun; 6(12):9680-8. PubMed ID: 24823960
    [TBL] [Abstract][Full Text] [Related]  

  • 10. From Initial Nucleation to Cassie-Baxter State of Condensed Droplets on Nanotextured Superhydrophobic Surfaces.
    Lv C; Zhang X; Niu F; He F; Hao P
    Sci Rep; 2017 Feb; 7():42752. PubMed ID: 28202939
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wetting on fractal superhydrophobic surfaces from "core-shell" particles: a comparison of theory and experiment.
    Synytska A; Ionov L; Grundke K; Stamm M
    Langmuir; 2009 Mar; 25(5):3132-6. PubMed ID: 19437778
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Suppression of wetting transition on evaporative fakir droplets by using slippery superhydrophobic surfaces with low depinning force.
    Shamim JA; Takahashi Y; Goswami A; Shaukat N; Hsu WL; Choi J; Daiguji H
    Sci Rep; 2023 Feb; 13(1):2368. PubMed ID: 36759577
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Turning a Superhydrophilic Surface Weakly Hydrophilic: Topological Wetting States.
    Gao Y; Zhu C; Zuhlke C; Alexander D; Francisco JS; Zeng XC
    J Am Chem Soc; 2020 Oct; 142(43):18491-18502. PubMed ID: 33059449
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cassie State Stability and Gas Restoration Capability of Superhydrophobic Surfaces with Truncated Cone-Shaped Pillars.
    Han X; Wang M; Yan R; Wang H
    Langmuir; 2021 Nov; 37(44):12897-12906. PubMed ID: 34714661
    [TBL] [Abstract][Full Text] [Related]  

  • 15. How to make the Cassie wetting state stable?
    Whyman G; Bormashenko E
    Langmuir; 2011 Jul; 27(13):8171-6. PubMed ID: 21644550
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Water droplet motion control on superhydrophobic surfaces: exploiting the Wenzel-to-Cassie transition.
    Liu G; Fu L; Rode AV; Craig VS
    Langmuir; 2011 Mar; 27(6):2595-600. PubMed ID: 21322574
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of a Cationic Surfactant on Droplet Wetting on Superhydrophobic Surfaces.
    Aldhaleai A; Tsai PA
    Langmuir; 2020 Apr; 36(16):4308-4316. PubMed ID: 32298121
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Revisiting the Critical Condition for the Cassie-Wenzel Transition on Micropillar-Structured Surfaces.
    Fang W; Guo HY; Li B; Li Q; Feng XQ
    Langmuir; 2018 Apr; 34(13):3838-3844. PubMed ID: 29513543
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A simple way to achieve pattern-dependent tunable adhesion in superhydrophobic surfaces by a femtosecond laser.
    Zhang D; Chen F; Yang Q; Yong J; Bian H; Ou Y; Si J; Meng X; Hou X
    ACS Appl Mater Interfaces; 2012 Sep; 4(9):4905-12. PubMed ID: 22909564
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    Li X; Yang J; Lv K; Papadopoulos P; Sun J; Wang D; Zhao Y; Chen L; Wang D; Wang Z; Deng X
    Natl Sci Rev; 2021 May; 8(5):nwaa153. PubMed ID: 34691630
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.