BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 34034525)

  • 1. Experimental evolution can enhance benefits of rhizobia to novel legume hosts.
    Quides KW; Weisberg AJ; Trinh J; Salaheldine F; Cardenas P; Lee HH; Jariwala R; Chang JH; Sachs JL
    Proc Biol Sci; 2021 May; 288(1951):20210812. PubMed ID: 34034525
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nonnodulating Bradyrhizobium spp. Modulate the Benefits of Legume-Rhizobium Mutualism.
    Gano-Cohen KA; Stokes PJ; Blanton MA; Wendlandt CE; Hollowell AC; Regus JU; Kim D; Patel S; Pahua VJ; Sachs JL
    Appl Environ Microbiol; 2016 Sep; 82(17):5259-68. PubMed ID: 27316960
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative phosphoproteomic analyses provide evidence for extensive phosphorylation of regulatory proteins in the rhizobia-legume symbiosis.
    Zhang Z; Ke D; Hu M; Zhang C; Deng L; Li Y; Li J; Zhao H; Cheng L; Wang L; Yuan H
    Plant Mol Biol; 2019 Jun; 100(3):265-283. PubMed ID: 30989446
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cell autonomous sanctions in legumes target ineffective rhizobia in nodules with mixed infections.
    Regus JU; Quides KW; O'Neill MR; Suzuki R; Savory EA; Chang JH; Sachs JL
    Am J Bot; 2017 Sep; 104(9):1299-1312. PubMed ID: 29885243
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Competitive interference among rhizobia reduces benefits to hosts.
    Rahman A; Manci M; Nadon C; Perez IA; Farsamin WF; Lampe MT; Le TH; Torres Martínez L; Weisberg AJ; Chang JH; Sachs JL
    Curr Biol; 2023 Jul; 33(14):2988-3001.e4. PubMed ID: 37490853
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The direct effects of plant polyploidy on the legume-rhizobia mutualism.
    Forrester NJ; Ashman TL
    Ann Bot; 2018 Feb; 121(2):209-220. PubMed ID: 29182713
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interspecific conflict and the evolution of ineffective rhizobia.
    Gano-Cohen KA; Wendlandt CE; Stokes PJ; Blanton MA; Quides KW; Zomorrodian A; Adinata ES; Sachs JL
    Ecol Lett; 2019 Jun; 22(6):914-924. PubMed ID: 30887662
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pangenome Evolution Reconciles Robustness and Instability of Rhizobial Symbiosis.
    Weisberg AJ; Rahman A; Backus D; Tyavanagimatt P; Chang JH; Sachs JL
    mBio; 2022 Jun; 13(3):e0007422. PubMed ID: 35416699
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Host-Associated Rhizobial Fitness: Dependence on Nitrogen, Density, Community Complexity, and Legume Genotype.
    Burghardt LT; Epstein B; Hoge M; Trujillo DI; Tiffin P
    Appl Environ Microbiol; 2022 Aug; 88(15):e0052622. PubMed ID: 35852362
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Loss-of-function of ASPARTIC PEPTIDASE NODULE-INDUCED 1 (APN1) in Lotus japonicus restricts efficient nitrogen-fixing symbiosis with specific Mesorhizobium loti strains.
    Yamaya-Ito H; Shimoda Y; Hakoyama T; Sato S; Kaneko T; Hossain MS; Shibata S; Kawaguchi M; Hayashi M; Kouchi H; Umehara Y
    Plant J; 2018 Jan; 93(1):5-16. PubMed ID: 29086445
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The rhizobial autotransporter determines the symbiotic nitrogen fixation activity of
    Shimoda Y; Nishigaya Y; Yamaya-Ito H; Inagaki N; Umehara Y; Hirakawa H; Sato S; Yamazaki T; Hayashi M
    Proc Natl Acad Sci U S A; 2020 Jan; 117(3):1806-1815. PubMed ID: 31900357
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lotus japonicus alters in planta fitness of Mesorhizobium loti dependent on symbiotic nitrogen fixation.
    Quides KW; Stomackin GM; Lee HH; Chang JH; Sachs JL
    PLoS One; 2017; 12(9):e0185568. PubMed ID: 28957401
    [TBL] [Abstract][Full Text] [Related]  

  • 13. LACK OF SYMBIONT ACCOMMODATION controls intracellular symbiont accommodation in root nodule and arbuscular mycorrhizal symbiosis in Lotus japonicus.
    Suzaki T; Takeda N; Nishida H; Hoshino M; Ito M; Misawa F; Handa Y; Miura K; Kawaguchi M
    PLoS Genet; 2019 Jan; 15(1):e1007865. PubMed ID: 30605473
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phytohormone regulation of legume-rhizobia interactions.
    Ferguson BJ; Mathesius U
    J Chem Ecol; 2014 Jul; 40(7):770-90. PubMed ID: 25052910
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Legumes versus rhizobia: a model for ongoing conflict in symbiosis.
    Sachs JL; Quides KW; Wendlandt CE
    New Phytol; 2018 Sep; 219(4):1199-1206. PubMed ID: 29845625
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Early Molecular Dialogue Between Legumes and Rhizobia: Why Are They So Important?
    Valdés-López O; Reyero-Saavedra MDR; Isidra-Arellano MC; Sánchez-Correa MDS
    Results Probl Cell Differ; 2020; 69():409-419. PubMed ID: 33263881
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lotus hosts delimit the mutualism-parasitism continuum of Bradyrhizobium.
    Regus JU; Gano KA; Hollowell AC; Sofish V; Sachs JL
    J Evol Biol; 2015 Feb; 28(2):447-56. PubMed ID: 25557323
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Autopolyploidy alters nodule-level interactions in the legume-rhizobium mutualism.
    Forrester NJ; Ashman TL
    Am J Bot; 2020 Feb; 107(2):179-185. PubMed ID: 31721161
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dysregulation of host-control causes interspecific conflict over host investment into symbiotic organs.
    Quides KW; Salaheldine F; Jariwala R; Sachs JL
    Evolution; 2021 May; 75(5):1189-1200. PubMed ID: 33521949
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Emergence of β-rhizobia as new root nodulating bacteria in legumes and current status of the legume-rhizobium host specificity dogma.
    Hassen AI; Lamprecht SC; Bopape FL
    World J Microbiol Biotechnol; 2020 Feb; 36(3):40. PubMed ID: 32095903
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.