These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 34034533)

  • 1. Fin sweep angle does not determine flapping propulsive performance.
    Zurman-Nasution AN; Ganapathisubramani B; Weymouth GD
    J R Soc Interface; 2021 May; 18(178):20210174. PubMed ID: 34034533
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of fin ray flexural rigidity on the propulsive forces generated by a biorobotic fish pectoral fin.
    Tangorra JL; Lauder GV; Hunter IW; Mittal R; Madden PG; Bozkurttas M
    J Exp Biol; 2010 Dec; 213(Pt 23):4043-54. PubMed ID: 21075946
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Propulsive performance of biologically inspired flapping foils at high Reynolds numbers.
    Techet AH
    J Exp Biol; 2008 Jan; 211(Pt 2):274-9. PubMed ID: 18165255
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Undulatory locomotion of flexible foils as biomimetic models for understanding fish propulsion.
    Shelton RM; Thornycroft PJ; Lauder GV
    J Exp Biol; 2014 Jun; 217(Pt 12):2110-20. PubMed ID: 24625649
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of the caudal peduncle in a fish-inspired robotic model: how changing stiffness and angle of attack affects swimming performance.
    Matthews DG; Zhu R; Wang J; Dong H; Bart-Smith H; Lauder G
    Bioinspir Biomim; 2022 Oct; 17(6):. PubMed ID: 36206750
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting propulsive forces using distributed sensors in a compliant, high DOF, robotic fin.
    Kahn JC; Peretz DJ; Tangorra JL
    Bioinspir Biomim; 2015 May; 10(3):036009. PubMed ID: 25985056
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aerodynamic performance of flapping wing with alula under different kinematics of complex flapping motion.
    Bao H; Song B; Ma D; Xue D
    Bioinspir Biomim; 2023 Dec; 19(1):. PubMed ID: 38011727
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Force scaling and efficiency of elongated median fin propulsion.
    Uddin MI; Garcia GA; Curet OM
    Bioinspir Biomim; 2022 May; 17(4):. PubMed ID: 35366647
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thrust generation and propulsive efficiency in dolphin-like swimming propulsion.
    Guo J; Zhang W; Han P; Fish FE; Dong H
    Bioinspir Biomim; 2023 Jul; 18(5):. PubMed ID: 37414002
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fish biorobotics: kinematics and hydrodynamics of self-propulsion.
    Lauder GV; Anderson EJ; Tangorra J; Madden PG
    J Exp Biol; 2007 Aug; 210(Pt 16):2767-80. PubMed ID: 17690224
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Undulatory Swimming Performance and Body Stiffness Modulation in a Soft Robotic Fish-Inspired Physical Model.
    Jusufi A; Vogt DM; Wood RJ; Lauder GV
    Soft Robot; 2017 Sep; 4(3):202-210. PubMed ID: 29182079
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Passive robotic models of propulsion by the bodies and caudal fins of fish.
    Lauder GV; Flammang B; Alben S
    Integr Comp Biol; 2012 Nov; 52(5):576-87. PubMed ID: 22740513
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Motion mechanism and thrust characteristics of amphibious robots with long fin fluctuation for propulsion on hard level ground.
    Zhang J; Zhou J; Yuan S; Jing C
    Bioinspir Biomim; 2022 Aug; 17(5):. PubMed ID: 35728618
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bio-inspired compensatory strategies for damage to flapping robotic propulsors.
    Hooper ML; Scherl I; Gharib M
    J R Soc Interface; 2024 Jul; 21(216):20240141. PubMed ID: 38955227
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fin-fin interactions during locomotion in a simplified biomimetic fish model.
    Matthews DG; Lauder GV
    Bioinspir Biomim; 2021 Sep; 16(4):. PubMed ID: 34015781
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluid dynamics of flapping aquatic flight in the bird wrasse: three-dimensional unsteady computations with fin deformation.
    Ramamurti R; Sandberg WC; Löhner R; Walker JA; Westneat MW
    J Exp Biol; 2002 Oct; 205(Pt 19):2997-3008. PubMed ID: 12200403
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Form, function, and divergence of a generic fin shape in small cetaceans.
    Pavlov V; Vincent C; Mikkelsen B; Lebeau J; Ridoux V; Siebert U
    PLoS One; 2021; 16(8):e0255464. PubMed ID: 34379664
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of biorobotic models of highly deformable fins for studying the mechanics and control of fin forces in fishes.
    Tangorra J; Phelan C; Esposito C; Lauder G
    Integr Comp Biol; 2011 Jul; 51(1):176-89. PubMed ID: 21653544
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Material and geometric effects on propulsion of a fish tail.
    Hussein AA; Ragab SA; Hajj MR; Patil MJ
    Bioinspir Biomim; 2021 Sep; 16(6):. PubMed ID: 34450610
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Understanding undulatory locomotion in fishes using an inertia-compensated flapping foil robotic device.
    Wen L; Lauder G
    Bioinspir Biomim; 2013 Dec; 8(4):046013. PubMed ID: 24263114
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.