These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 34034533)

  • 21. Effects of fish caudal fin sweep angle and kinematics on thrust production during low-speed thunniform swimming.
    Matta A; Bayandor J; Battaglia F; Pendar H
    Biol Open; 2019 Jul; 8(7):. PubMed ID: 31320378
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A tale of two fish tails: does a forked tail really perform better than a truncate tail when cruising?
    Tack NB; Gemmell BJ
    J Exp Biol; 2022 Nov; 225(22):. PubMed ID: 36354328
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Escaping Flatland: three-dimensional kinematics and hydrodynamics of median fins in fishes.
    Tytell ED; Standen EM; Lauder GV
    J Exp Biol; 2008 Jan; 211(Pt 2):187-95. PubMed ID: 18165246
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Propulsive performance of an under-actuated robotic ribbon fin.
    Liu H; Curet OM
    Bioinspir Biomim; 2017 Jun; 12(3):036015. PubMed ID: 28481218
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A biorobotic model of the sunfish pectoral fin for investigations of fin sensorimotor control.
    Phelan C; Tangorra J; Lauder G; Hale M
    Bioinspir Biomim; 2010 Sep; 5(3):035003. PubMed ID: 20729572
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fish robotics: multi-fin propulsion and the coupling of fin phase, spacing, and compliance.
    Mignano AP; Kadapa S; Drago AC; Lauder GV; Kwatny HG; Tangorra JL
    Bioinspir Biomim; 2024 Jan; 19(2):. PubMed ID: 38211345
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The application of conducting polymers to a biorobotic fin propulsor.
    Tangorra J; Anquetil P; Fofonoff T; Chen A; Del Zio M; Hunter I
    Bioinspir Biomim; 2007 Jun; 2(2):S6-17. PubMed ID: 17671330
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of non-uniform stiffness on the swimming performance of a passively-flexing, fish-like foil model.
    Lucas KN; Thornycroft PJ; Gemmell BJ; Colin SP; Costello JH; Lauder GV
    Bioinspir Biomim; 2015 Oct; 10(5):056019. PubMed ID: 26447541
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comparative kinematics and hydrodynamics of odontocete cetaceans: morphological and ecological correlates with swimming performance.
    Fish FE
    J Exp Biol; 1998 Oct; 201(Pt 20):2867-77. PubMed ID: 9866875
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of root chord movement on thrust generation of oscillatory pectoral fins.
    Arastehfar S; Chew CM
    Bioinspir Biomim; 2021 Apr; 16(3):. PubMed ID: 33157547
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Development of a bio-inspired transformable robotic fin.
    Yang Y; Xia Y; Qin F; Xu M; Li W; Zhang S
    Bioinspir Biomim; 2016 Aug; 11(5):056010. PubMed ID: 27580003
    [TBL] [Abstract][Full Text] [Related]  

  • 32. In-line swimming dynamics revealed by fish interacting with a robotic mechanism.
    Thandiackal R; Lauder G
    Elife; 2023 Feb; 12():. PubMed ID: 36744863
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A robotic fish caudal fin: effects of stiffness and motor program on locomotor performance.
    Esposito CJ; Tangorra JL; Flammang BE; Lauder GV
    J Exp Biol; 2012 Jan; 215(Pt 1):56-67. PubMed ID: 22162853
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hydrodynamics of a robotic fish tail: effects of the caudal peduncle, fin ray motions and the flow speed.
    Ren Z; Yang X; Wang T; Wen L
    Bioinspir Biomim; 2016 Feb; 11(1):016008. PubMed ID: 26855405
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Extremely large sweep amplitude enables high wing loading in giant hovering insects.
    Phan HV; Truong QT; Park HC
    Bioinspir Biomim; 2019 Sep; 14(6):066006. PubMed ID: 31434064
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A numerical study on the aerodynamic effects of dynamic twisting on forward flight flapping wings.
    Dong Y; Song B; Yang W; Xue D
    Bioinspir Biomim; 2024 Feb; 19(2):. PubMed ID: 38306681
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Performance variation due to stiffness in a tuna-inspired flexible foil model.
    Rosic MN; Thornycroft PJ; Feilich KL; Lucas KN; Lauder GV
    Bioinspir Biomim; 2017 Jan; 12(1):016011. PubMed ID: 28094239
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comparative kinematics and hydrodynamics of odontocete cetaceans: morphological and ecological correlates with swimming performance.
    Fish FE
    J Exp Biol; 1998 Sep; 201(Pt 20):2867-2877. PubMed ID: 9739069
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Phenomenology and scaling of optimal flapping wing kinematics.
    Gehrke A; Mulleners K
    Bioinspir Biomim; 2021 Jan; 16(2):. PubMed ID: 33264765
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Theoretical and numerical studies on a five-ray flexible pectoral fin during labriform swimming.
    Weng J; Zhu Y; Du X; Yang G; Hu D
    Bioinspir Biomim; 2019 Dec; 15(1):016007. PubMed ID: 31694000
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.