These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 34034751)

  • 1. Fast and efficient Rmap assembly using the Bi-labelled de Bruijn graph.
    Mukherjee K; Rossi M; Salmela L; Boucher C
    Algorithms Mol Biol; 2021 May; 16(1):6. PubMed ID: 34034751
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aligning optical maps to de Bruijn graphs.
    Mukherjee K; Alipanahi B; Kahveci T; Salmela L; Boucher C
    Bioinformatics; 2019 Sep; 35(18):3250-3256. PubMed ID: 30698651
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Benchmarking of de novo assembly algorithms for Nanopore data reveals optimal performance of OLC approaches.
    Cherukuri Y; Janga SC
    BMC Genomics; 2016 Aug; 17 Suppl 7(Suppl 7):507. PubMed ID: 27556636
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assembly of long error-prone reads using de Bruijn graphs.
    Lin Y; Yuan J; Kolmogorov M; Shen MW; Chaisson M; Pevzner PA
    Proc Natl Acad Sci U S A; 2016 Dec; 113(52):E8396-E8405. PubMed ID: 27956617
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fast and accurate correction of optical mapping data via spaced seeds.
    Salmela L; Mukherjee K; Puglisi SJ; Muggli MD; Boucher C
    Bioinformatics; 2020 Feb; 36(3):682-689. PubMed ID: 31504206
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Clover: a clustering-oriented de novo assembler for Illumina sequences.
    Hsieh MF; Lu CL; Tang CY
    BMC Bioinformatics; 2020 Nov; 21(1):528. PubMed ID: 33203354
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Maligner: a fast ordered restriction map aligner.
    Mendelowitz LM; Schwartz DC; Pop M
    Bioinformatics; 2016 Apr; 32(7):1016-22. PubMed ID: 26637292
    [TBL] [Abstract][Full Text] [Related]  

  • 8. FastEtch: A Fast Sketch-Based Assembler for Genomes.
    Ghosh P; Kalyanaraman A
    IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(4):1091-1106. PubMed ID: 28910776
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Space-Efficient Indexing of Spaced Seeds for Accurate Overlap Computation of Raw Optical Mapping Data.
    Walve R; Puglisi SJ; Salmela L
    IEEE/ACM Trans Comput Biol Bioinform; 2021 May; PP():. PubMed ID: 34057895
    [TBL] [Abstract][Full Text] [Related]  

  • 10. AGORA: Assembly Guided by Optical Restriction Alignment.
    Lin HC; Goldstein S; Mendelowitz L; Zhou S; Wetzel J; Schwartz DC; Pop M
    BMC Bioinformatics; 2012 Aug; 13():189. PubMed ID: 22856673
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inference of viral quasispecies with a paired de Bruijn graph.
    Freire B; Ladra S; Paramá JR; Salmela L
    Bioinformatics; 2021 May; 37(4):473-481. PubMed ID: 32926162
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient parallel and out of core algorithms for constructing large bi-directed de Bruijn graphs.
    Kundeti VK; Rajasekaran S; Dinh H; Vaughn M; Thapar V
    BMC Bioinformatics; 2010 Nov; 11():560. PubMed ID: 21078174
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Building large updatable colored de Bruijn graphs via merging.
    Muggli MD; Alipanahi B; Boucher C
    Bioinformatics; 2019 Jul; 35(14):i51-i60. PubMed ID: 31510647
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MegaGTA: a sensitive and accurate metagenomic gene-targeted assembler using iterative de Bruijn graphs.
    Li D; Huang Y; Leung CM; Luo R; Ting HF; Lam TW
    BMC Bioinformatics; 2017 Oct; 18(Suppl 12):408. PubMed ID: 29072142
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kohdista: an efficient method to index and query possible Rmap alignments.
    Muggli MD; Puglisi SJ; Boucher C
    Algorithms Mol Biol; 2019; 14():25. PubMed ID: 31867049
    [TBL] [Abstract][Full Text] [Related]  

  • 16. deGSM: Memory Scalable Construction Of Large Scale de Bruijn Graph.
    Guo H; Fu Y; Gao Y; Li J; Wang Y; Liu B
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(6):2157-2166. PubMed ID: 31056509
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cuttlefish: fast, parallel and low-memory compaction of de Bruijn graphs from large-scale genome collections.
    Khan J; Patro R
    Bioinformatics; 2021 Jul; 37(Suppl_1):i177-i186. PubMed ID: 34252958
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fast de Bruijn Graph Compaction in Distributed Memory Environments.
    Pan T; Nihalani R; Aluru S
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(1):136-148. PubMed ID: 30072337
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Buffering updates enables efficient dynamic de Bruijn graphs.
    Alanko J; Alipanahi B; Settle J; Boucher C; Gagie T
    Comput Struct Biotechnol J; 2021; 19():4067-4078. PubMed ID: 34377371
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NeatFreq: reference-free data reduction and coverage normalization for De Novo sequence assembly.
    McCorrison JM; Venepally P; Singh I; Fouts DE; Lasken RS; Methé BA
    BMC Bioinformatics; 2014 Nov; 15(1):357. PubMed ID: 25407910
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.