These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 34034751)

  • 21. NeatFreq: reference-free data reduction and coverage normalization for De Novo sequence assembly.
    McCorrison JM; Venepally P; Singh I; Fouts DE; Lasken RS; Methé BA
    BMC Bioinformatics; 2014 Nov; 15(1):357. PubMed ID: 25407910
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Buffering updates enables efficient dynamic de Bruijn graphs.
    Alanko J; Alipanahi B; Settle J; Boucher C; Gagie T
    Comput Struct Biotechnol J; 2021; 19():4067-4078. PubMed ID: 34377371
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A space and time-efficient index for the compacted colored de Bruijn graph.
    Almodaresi F; Sarkar H; Srivastava A; Patro R
    Bioinformatics; 2018 Jul; 34(13):i169-i177. PubMed ID: 29949982
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Genome-scale de novo assembly using ALGA.
    Swat S; Laskowski A; Badura J; Frohmberg W; Wojciechowski P; Swiercz A; Kasprzak M; Blazewicz J
    Bioinformatics; 2021 Jul; 37(12):1644-1651. PubMed ID: 33471088
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Read mapping on de Bruijn graphs.
    Limasset A; Cazaux B; Rivals E; Peterlongo P
    BMC Bioinformatics; 2016 Jun; 17(1):237. PubMed ID: 27306641
    [TBL] [Abstract][Full Text] [Related]  

  • 26. EPGA2: memory-efficient de novo assembler.
    Luo J; Wang J; Li W; Zhang Z; Wu FX; Li M; Pan Y
    Bioinformatics; 2015 Dec; 31(24):3988-90. PubMed ID: 26315905
    [TBL] [Abstract][Full Text] [Related]  

  • 27. AN EFFICIENT ALGORITHM FOR CHINESE POSTMAN WALK ON BI-DIRECTED DE BRUIJN GRAPHS.
    Kundeti V; Rajasekaran S; Dinh H
    Discrete Math Algorithms Appl; 2010; 1():184-196. PubMed ID: 25364472
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A representation of a compressed de Bruijn graph for pan-genome analysis that enables search.
    Beller T; Ohlebusch E
    Algorithms Mol Biol; 2016; 11():20. PubMed ID: 27437028
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Practical dynamic de Bruijn graphs.
    Crawford VG; Kuhnle A; Boucher C; Chikhi R; Gagie T
    Bioinformatics; 2018 Dec; 34(24):4189-4195. PubMed ID: 29939217
    [TBL] [Abstract][Full Text] [Related]  

  • 30. HaVec: An Efficient de Bruijn Graph Construction Algorithm for Genome Assembly.
    Rahman MM; Sharker R; Biswas S; Rahman MS
    Int J Genomics; 2017; 2017():6120980. PubMed ID: 28929105
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Characterizing microsatellite polymorphisms using assembly-based and mapping-based tools.
    Demir G; Alkan C
    Turk J Biol; 2019; 43(4):264-273. PubMed ID: 31496881
    [TBL] [Abstract][Full Text] [Related]  

  • 32. TwoPaCo: an efficient algorithm to build the compacted de Bruijn graph from many complete genomes.
    Minkin I; Pham S; Medvedev P
    Bioinformatics; 2017 Dec; 33(24):4024-4032. PubMed ID: 27659452
    [TBL] [Abstract][Full Text] [Related]  

  • 33. GetOrganelle: a fast and versatile toolkit for accurate de novo assembly of organelle genomes.
    Jin JJ; Yu WB; Yang JB; Song Y; dePamphilis CW; Yi TS; Li DZ
    Genome Biol; 2020 Sep; 21(1):241. PubMed ID: 32912315
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Integration of string and de Bruijn graphs for genome assembly.
    Huang YT; Liao CF
    Bioinformatics; 2016 May; 32(9):1301-7. PubMed ID: 26755626
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fragmentation and Coverage Variation in Viral Metagenome Assemblies, and Their Effect in Diversity Calculations.
    García-López R; Vázquez-Castellanos JF; Moya A
    Front Bioeng Biotechnol; 2015; 3():141. PubMed ID: 26442255
    [TBL] [Abstract][Full Text] [Related]  

  • 36. MEGAHIT v1.0: A fast and scalable metagenome assembler driven by advanced methodologies and community practices.
    Li D; Luo R; Liu CM; Leung CM; Ting HF; Sadakane K; Yamashita H; Lam TW
    Methods; 2016 Jun; 102():3-11. PubMed ID: 27012178
    [TBL] [Abstract][Full Text] [Related]  

  • 37. HyDA-Vista: towards optimal guided selection of k-mer size for sequence assembly.
    Shariat B; Movahedi NS; Chitsaz H; Boucher C
    BMC Genomics; 2014; 15 Suppl 10(Suppl 10):S9. PubMed ID: 25558875
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Finding Overlapping Rmaps via Clustering.
    Mukherjee K; Dole-Muinos D; Ajayi A; Rossi M; Prosperi M; Boucher C
    IEEE/ACM Trans Comput Biol Bioinform; 2021 Dec; PP():. PubMed ID: 34890332
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bloom Filter Trie: an alignment-free and reference-free data structure for pan-genome storage.
    Holley G; Wittler R; Stoye J
    Algorithms Mol Biol; 2016; 11():3. PubMed ID: 27087830
    [TBL] [Abstract][Full Text] [Related]  

  • 40. De novo assembly of bacterial genomes with repetitive DNA regions by dnaasm application.
    Kuśmirek W; Nowak R
    BMC Bioinformatics; 2018 Jul; 19(1):273. PubMed ID: 30021513
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.