These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
204 related articles for article (PubMed ID: 34035072)
1. Tracking Mitochondrial Density and Positioning along a Growing Neuronal Process in Individual Mondal S; Dubey J; Awasthi A; Sure GR; Vasudevan A; Koushika SP eNeuro; 2021; 8(4):. PubMed ID: 34035072 [TBL] [Abstract][Full Text] [Related]
2. Under Pressure: A Microfluidic Chip for Prolonged, Anesthetic-Free Imaging of Neuronal Mitostasis in Franco JA eNeuro; 2021; 8(5):. PubMed ID: 34475223 [No Abstract] [Full Text] [Related]
3. Imaging in vivo neuronal transport in genetic model organisms using microfluidic devices. Mondal S; Ahlawat S; Rau K; Venkataraman V; Koushika SP Traffic; 2011 Apr; 12(4):372-85. PubMed ID: 21199219 [TBL] [Abstract][Full Text] [Related]
4. Simple microfluidic devices for in vivo imaging of C. elegans, Drosophila and zebrafish. Mondal S; Ahlawat S; Koushika SP J Vis Exp; 2012 Sep; (67):. PubMed ID: 23051668 [TBL] [Abstract][Full Text] [Related]
5. UNC-16/JIP3 and UNC-76/FEZ1 limit the density of mitochondria in C. elegans neurons by maintaining the balance of anterograde and retrograde mitochondrial transport. Sure GR; Chatterjee A; Mishra N; Sabharwal V; Devireddy S; Awasthi A; Mohan S; Koushika SP Sci Rep; 2018 Jun; 8(1):8938. PubMed ID: 29895958 [TBL] [Abstract][Full Text] [Related]
6. Quantitative fluorescence imaging of mitochondria in body wall muscles of Caenorhabditis elegans under hyperglycemic conditions using a microfluidic chip. Sofela S; Sahloul S; Bhattacharjee S; Bose A; Usman U; Song YA Integr Biol (Camb); 2020 Jun; 12(6):150-160. PubMed ID: 32510148 [TBL] [Abstract][Full Text] [Related]
7. Pneumatic stimulation of C. elegans mechanoreceptor neurons in a microfluidic trap. Nekimken AL; Fehlauer H; Kim AA; Manosalvas-Kjono SN; Ladpli P; Memon F; Gopisetty D; Sanchez V; Goodman MB; Pruitt BL; Krieg M Lab Chip; 2017 Mar; 17(6):1116-1127. PubMed ID: 28207921 [TBL] [Abstract][Full Text] [Related]
8. A Shearless Microfluidic Device Detects a Role in Mechanosensitivity for AWC Caprini D; Schwartz S; Lanza E; Milanetti E; Lucente V; Ferrarese G; Chiodo L; Nicoletti M; Folli V Adv Biol (Weinh); 2021 Sep; 5(9):e2100927. PubMed ID: 34423577 [TBL] [Abstract][Full Text] [Related]
9. Bioenergetic Health Assessment of a Single Caenorhabditis elegans from Postembryonic Development to Aging Stages via Monitoring Changes in the Oxygen Consumption Rate within a Microfluidic Device. Huang SH; Lin YW Sensors (Basel); 2018 Jul; 18(8):. PubMed ID: 30060586 [TBL] [Abstract][Full Text] [Related]
10. Age-Related Phasic Patterns of Mitochondrial Maintenance in Adult Caenorhabditis elegans Neurons. Morsci NS; Hall DH; Driscoll M; Sheng ZH J Neurosci; 2016 Jan; 36(4):1373-85. PubMed ID: 26818523 [TBL] [Abstract][Full Text] [Related]
11. Neurite sprouting and synapse deterioration in the aging Caenorhabditis elegans nervous system. Toth ML; Melentijevic I; Shah L; Bhatia A; Lu K; Talwar A; Naji H; Ibanez-Ventoso C; Ghose P; Jevince A; Xue J; Herndon LA; Bhanot G; Rongo C; Hall DH; Driscoll M J Neurosci; 2012 Jun; 32(26):8778-90. PubMed ID: 22745480 [TBL] [Abstract][Full Text] [Related]
12. A Simple Microfluidic Chip for Long-Term Growth and Imaging of Caenorhabditis elegans. Dubey J; Mondal S; Koushika SP J Vis Exp; 2022 Apr; (182):. PubMed ID: 35467659 [TBL] [Abstract][Full Text] [Related]
13. A multi-trap microfluidic chip enabling longitudinal studies of nerve regeneration in Caenorhabditis elegans. Gokce SK; Hegarty EM; Mondal S; Zhao P; Ghorashian N; Hilliard MA; Ben-Yakar A Sci Rep; 2017 Aug; 7(1):9837. PubMed ID: 28852096 [TBL] [Abstract][Full Text] [Related]
14. A microfluidic platform for lifelong high-resolution and high throughput imaging of subtle aging phenotypes in C. elegans. Saberi-Bosari S; Huayta J; San-Miguel A Lab Chip; 2018 Oct; 18(20):3090-3100. PubMed ID: 30192357 [TBL] [Abstract][Full Text] [Related]
15. Microfluidic Devices for Behavioral Analysis, Microscopy, and Neuronal Imaging in Caenorhabditis elegans. Lagoy RC; Larsen E; Lawler D; White H; Albrecht DR Methods Mol Biol; 2022; 2468():293-318. PubMed ID: 35320572 [TBL] [Abstract][Full Text] [Related]
16. Using a Microfluidics Device for Mechanical Stimulation and High Resolution Imaging of C. elegans. Fehlauer H; Nekimken AL; Kim AA; Pruitt BL; Goodman MB; Krieg M J Vis Exp; 2018 Feb; (132):. PubMed ID: 29553526 [TBL] [Abstract][Full Text] [Related]
17. Studying Parkinson's disease using Caenorhabditis elegans models in microfluidic devices. Youssef K; Tandon A; Rezai P Integr Biol (Camb); 2019 May; 11(5):186-207. PubMed ID: 31251339 [TBL] [Abstract][Full Text] [Related]
18. Long-Term High-Resolution Imaging of Developing C. elegans Larvae with Microfluidics. Keil W; Kutscher LM; Shaham S; Siggia ED Dev Cell; 2017 Jan; 40(2):202-214. PubMed ID: 28041904 [TBL] [Abstract][Full Text] [Related]
19. Cargo crowding at actin-rich regions along axons causes local traffic jams. Sood P; Murthy K; Kumar V; Nonet ML; Menon GI; Koushika SP Traffic; 2018 Mar; 19(3):166-181. PubMed ID: 29178177 [TBL] [Abstract][Full Text] [Related]
20. Retrograde Mitochondrial Transport Is Essential for Organelle Distribution and Health in Zebrafish Neurons. Mandal A; Wong HC; Pinter K; Mosqueda N; Beirl A; Lomash RM; Won S; Kindt KS; Drerup CM J Neurosci; 2021 Feb; 41(7):1371-1392. PubMed ID: 33376159 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]